1
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Sun GY, Wen J. Progress in the research of cuproptosis and possible targets for cancer therapy. World J Clin Oncol 2023; 14:324-334. [PMID: 37771632 PMCID: PMC10523190 DOI: 10.5306/wjco.v14.i9.324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Developing novel cancer therapies that exploit programmed cell death pathways holds promise for advancing cancer treatment. According to a recently published study in Science, copper death (cuproptosis) occurs when intracellular copper is overloaded, triggering aggregation of lipidated mitochondrial proteins and Fe-S cluster proteins. This intriguing phenomenon is triggered by the instability of copper ions. Understanding the molecular mechanisms behind cuproptosis and its associated genes, as identified by Tsvetkov, including ferredoxin 1, lipoic acid synthase, lipoyltransferase 1, dihydrolipid amide dehydrogenase, dihydrolipoamide transacetylase, pyruvate dehydrogenase α1, pyruvate dehydrogenase β, metallothionein, glutaminase, and cyclin-dependent kinase inhibitor 2A, may open new avenues for cancer therapy. Here, we provide a new understanding of the role of copper death and related genes in cancer.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Guo-Ying Sun
- Department of Histology and Embryology, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Xu QT, Wang ZW, Cai MY, Wei JF, Ding Q. A novel cuproptosis-related prognostic 2-lncRNAs signature in breast cancer. Front Pharmacol 2023; 13:1115608. [PMID: 36699089 PMCID: PMC9868634 DOI: 10.3389/fphar.2022.1115608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Cuproptosis, a newly defined regulated form of cell death, is mediated by the accumulation of copper ions in cells and related to protein lipoacylation. Seven genes have been reported as key genes of cuproptosis phenotype. Cuproptosis may be developed by subsequent research as a target to treat cancer, such as breast cancer. Long-noncoding RNA (lncRNA) has been proved to play a vital role in regulating the biological process of breast cancer. However, the role of lncRNAs in cuproptosis is poorly studied. Methods: Based on TCGA (The Cancer Genome Atlas) database and integrated several R packages, we screened out 153 cuproptosis-related lncRNAs and constructed a novel cuproptosis-related prognostic 2-lncRNAs signature (BCCuS) in breast cancer and then verified. By using pRRophetic package and machine learning, 72 anticancer drugs, significantly related to the model, were screened out. qPCR was used to detect the differentially expression of two model lncRNAs and seven cuproptosis genes between 10 pairs of breast cancer tissue samples and adjacent samples. Results: We constructed a novel cuproptosis-related prognostic 2-lncRNAs (USP2-AS1, NIFK-AS1) signature (BCCuS) in breast cancer. Univariate COX analysis (p < .001) and multivariate COX analysis (p < .001) validated that BCCuS was an independent prognostic factor for breast cancer. Overall survival Kaplan Meier-plotter, ROC curve and Risk Plot validated the prognostic value of BCCuS both in test set and verification set. Nomogram and C-index proved that BCCuS has strong correlation with clinical decision-making. BCCuS still maintain inspection efficiency when patients were splitting into Stage I-II (p = .024) and Stage III-IV (p = .003) breast cancer. BCCuS-high group and BCCuS-low group showed significant differences in gene mutation frequency, immune function, TIDE (tumor immune dysfunction and exclusion) score and other phenotypes. TMB (tumor mutation burden)-high along with BCCuS-high group had the lowest Survival probability (p = .005). 36 anticancer drugs whose sensitivity (IC50) was significantly related to the model were screened out using pRRophetic package. qPCR results showed that two model lncRNAs (USP2-AS1, NIFK-AS1) and three Cuproptosis genes (FDX1, PDHA1, DLAT) expressed differently between 10 pairs of breast cancer tissue samples and adjacent samples. Conclusion: The current study reveals that cuproptosis-related prognostic 2-lncRNAs signature (BCCuS) may be useful in predicting the prognosis, biological characteristics, and appropriate treatment of breast cancer patients.
Collapse
Affiliation(s)
- Qi-Tong Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zi-Wen Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Meng-Yuan Cai
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Ji-Fu Wei, ; Qiang Ding,
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China,*Correspondence: Ji-Fu Wei, ; Qiang Ding,
| |
Collapse
|
4
|
The Impact of Modifying Sunitinib Treatment Scheduling on Renal Cancer Tumor Biology and Resistance. J Clin Med 2022; 11:jcm11020369. [PMID: 35054064 PMCID: PMC8779527 DOI: 10.3390/jcm11020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
With sunitinib treatment of metastatic renal cell carcinoma, most patients end up developing resistance over time. Recent clinical trials have shown that individualizing treatment protocols could delay resistance and result in better outcomes. We developed an in vivo xenograft tumor model and compared tumor growth rate, morphological, and transcriptomic differences between alternative and traditional treatment schedules. Our results show that the alternative treatment regime could delay/postpone cancer progression. Additionally, we identified distinct morphological changes in the tumor with alternative and traditional treatments, likely due to the significantly dysregulated signaling pathways between the protocols. Further investigation of the signaling pathways underlying these morphological changes may lead potential therapeutic targets to be used in a combined treatment with sunitinib, which offers promise in postponing/reversing the resistance of sunitinib.
Collapse
|
5
|
Recouvreux MS, Diaz Bessone MI, Taruselli A, Todaro L, Lago Huvelle MA, Sampayo RG, Bissell MJ, Simian M. Alterations in Progesterone Receptor Isoform Balance in Normal and Neoplastic Breast Cells Modulates the Stem Cell Population. Cells 2020; 9:cells9092074. [PMID: 32932770 PMCID: PMC7564437 DOI: 10.3390/cells9092074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
To investigate the role of PR isoforms on the homeostasis of stem cells in the normal and neoplastic mammary gland, we used PRA and PRB transgenic mice and the T47D human breast cancer cell line and its derivatives, T47D YA and YB (manipulated to express only PRA or PRB, respectively). Flow cytometry and mammosphere assays revealed that in murine breast, overexpression of PRB leads to an increase in luminal and basal progenitor/stem cells. Ovariectomy had a negative impact on the luminal compartment and induced an increase in mammosphere-forming capacity in cells derived from WT and PRA mice only. Treatment with ICI 182,780 augmented the mammosphere-forming capacity of cells isolated from WT and PRA mice, whilst those from PRB remained unaltered. T47D YB cells showed an increase in the CD44+/CD24Low/- subpopulation; however, the number of tumorspheres did not vary relative to T47D and YA, even though they were larger, more irregular, and had increased clonogenic capacity. T47D and YA tumorspheres were modulated by estrogen/antiestrogens, whereas YB spheres remained unchanged in size and number. Our results show that alterations in PR isoform balance have an impact on normal and tumorigenic breast progenitor/stem cells and suggest a key role for the B isoform, with implications in response to antiestrogens.
Collapse
Affiliation(s)
- María Sol Recouvreux
- Área de Investigaciones, Instituto de Oncología, “Ángel H. Roffo”, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina; (M.S.R.); (M.I.D.B.); (A.T.); (L.T.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - María Inés Diaz Bessone
- Área de Investigaciones, Instituto de Oncología, “Ángel H. Roffo”, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina; (M.S.R.); (M.I.D.B.); (A.T.); (L.T.)
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina;
| | - Agustina Taruselli
- Área de Investigaciones, Instituto de Oncología, “Ángel H. Roffo”, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina; (M.S.R.); (M.I.D.B.); (A.T.); (L.T.)
| | - Laura Todaro
- Área de Investigaciones, Instituto de Oncología, “Ángel H. Roffo”, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina; (M.S.R.); (M.I.D.B.); (A.T.); (L.T.)
| | - María Amparo Lago Huvelle
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina;
| | - Rocío G. Sampayo
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
| | - Mina J. Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Marina Simian
- Área de Investigaciones, Instituto de Oncología, “Ángel H. Roffo”, Av. San Martín 5481, Buenos Aires C1417DTB, Argentina; (M.S.R.); (M.I.D.B.); (A.T.); (L.T.)
- Instituto de Nanosistemas, Universidad Nacional de San Martín, 25 de Mayo 1021, San Martín, Buenos Aires 1650, Argentina;
- Correspondence:
| |
Collapse
|
6
|
Le Naour A, Koffi Y, Diab M, Le Guennec D, Rougé S, Aldekwer S, Goncalves-Mendes N, Talvas J, Farges MC, Caldefie-Chezet F, Vasson MP, Rossary A. EO771, the first luminal B mammary cancer cell line from C57BL/6 mice. Cancer Cell Int 2020; 20:328. [PMID: 32699527 PMCID: PMC7372867 DOI: 10.1186/s12935-020-01418-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Despite decades of therapeutic trials, effective diagnosis, many drugs available and numerous studies on breast cancer, it remains the deadliest cancer in women. In order to choose the most appropriate treatment and to understand the prognosis of the patients, breast cancer is divided into different subtypes using a molecular classification. Just as there remains a need to discover new effective therapies, models to test them are also required. Methods The EO771 (also named E0771 or EO 771) murine mammary cancer cell line was originally isolated from a spontaneous tumour in C57BL/6 mouse. Although frequently used, this cell line remains poorly characterized. Therefore, the EO771 phenotype was investigated. The phenotype was compared to that of MCF-7 cells, known to be of luminal A subtype and to express estrogen receptors, as well as MDA-MB-231 cells, which are triple negative. Their sensitivity to hormonal treatment was evaluated by viability tests. Results The EO771 were estrogen receptor α negative, estrogen receptor β positive, progesterone receptor positive and ErbB2 positive. This phenotype was associated with a sensitivity to anti-estrogen treatments such as tamoxifen, 4-hydroxy-tamoxifen, endoxifen and fulvestrant. Conclusions On account of the numerous results published with the EO771 cell line, it is important to know its classification, to facilitate comparisons with corresponding types of tumours in patients. Transcriptomic and protein analysis of the EO771 cell line classified it within the luminal B subtype. Luminal B cancers correspond to one of the subtypes most frequently encountered in patients and associated with a poor prognosis.
Collapse
Affiliation(s)
- Augustin Le Naour
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Yvonne Koffi
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Mariane Diab
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Delphine Le Guennec
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Stéphanie Rougé
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Sahar Aldekwer
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Nicolas Goncalves-Mendes
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Jérémie Talvas
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Marie-Chantal Farges
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Florence Caldefie-Chezet
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| | - Marie-Paule Vasson
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France.,Department of Nutrition, Gabriel Montpied University Hospital, Jean Perrin Cancer Centre, 58 rue Montalembert, 63011 Clermont-Ferrand, France
| | - Adrien Rossary
- Human Nutrition Unit, ECREIN team, UMR 1019, University of Clermont Auvergne, INRAE, CRNH-Auvergne, TSA 50400, 28 place Henri Dunant, 63000 Clermont-Ferrand Cedex 1, France
| |
Collapse
|