1
|
Shu B, Wen Y, Lin R, He C, Luo C, Li F. HSPB8-BAG3 chaperone complex modulates cell invasion in intrahepatic cholangiocarcinoma by regulating CASA-mediated Filamin A degradation. Cancer Biol Ther 2024; 25:2396694. [PMID: 39215616 PMCID: PMC11370900 DOI: 10.1080/15384047.2024.2396694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The incidence of intrahepatic cholangiocarcinoma (ICC) is steadily rising, and it is associated with a high mortality rate. Clinical samples were collected to detect the expression of HSPB8 and BAG3 in ICC tissues. ICC cells were cultured and transfected with plasmids that overexpressed or silenced specific genes to investigate the impact of gene expression alterations on cell function. qPCR and Western blot techniques were utilized to measure gene and protein expression levels. A wound healing assay was conducted to assess cell migration ability. The Transwell assay was used to assess cell invasion ability. Co-IP was used to verify the binding relationship between HSPB8 and BAG3. The effects of HSPB8 and BAG3 on lung metastasis of tumors in vivo were verified by constructing a metastatic tumor model. Through the above experiments, we discovered that the expressions of HSPB8 and BAG3 were up-regulated in ICC tissues and cells, and their expressions were positively correlated. The metastatic ability of ICC cells could be promoted or inhibited by upregulating or downregulating the expression of BAG3. Furthermore, the HSPB8-BAG3 chaperone complex resulted in the abnormal degradation of Filamin A by activating autophagy. Increased expression of Filamin A inhibits the migration and invasion of ICC cells. Overexpression of HSPB8 and BAG3 in vivo promoted the lung metastasis ability of ICC cells. The HSPB8-BAG3 chaperone complex promotes ICC cell migration and invasion by regulating CASA-mediated degradation of Filamin A, offering insights for enhancing ICC therapeutic strategies.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ronghua Lin
- Department of General Surgery, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Cailan Luo
- Department of Hospital Nursing, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Fazhao Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Huang X, Guo J, Ning A, Zhang N, Sun Y. BAG3 promotes proliferation and migration of arterial smooth muscle cells by regulating STAT3 phosphorylation in diabetic vascular remodeling. Cardiovasc Diabetol 2024; 23:140. [PMID: 38664681 PMCID: PMC11046803 DOI: 10.1186/s12933-024-02216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.
Collapse
MESH Headings
- STAT3 Transcription Factor/metabolism
- Cell Proliferation
- Cell Movement
- Vascular Remodeling
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Phosphorylation
- Signal Transduction
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/genetics
- Male
- Cells, Cultured
- Mice, Knockout
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Humans
- Mice, Inbred C57BL
- Glycation End Products, Advanced/metabolism
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Jiayan Guo
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Anqi Ning
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
4
|
Liu XY, Qiao D, Zhang YL, Liu ZX, Chen YL, Que RY, Cao HY, Dai YC. Identification of marker genes associated with N6-methyladenosine and autophagy in ulcerative colitis. World J Clin Cases 2024; 12:1750-1765. [PMID: 38660076 PMCID: PMC11036473 DOI: 10.12998/wjcc.v12.i10.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Both N6-methyladenosine (m6A) methylation and autophagy are considered relevant to the pathogenesis of ulcerative colitis (UC). However, a systematic exploration of the role of the com-bination of m6A methylation and autophagy in UC remains to be performed. AIM To elucidate the autophagy-related genes of m6A with a diagnostic value for UC. METHODS The correlation between m6A-related genes and autophagy-related genes (ARGs) was analyzed. Finally, gene set enrichment analysis (GSEA) was performed on the characteristic genes. Additionally, the expression levels of four characteristic genes were verified in dextran sulfate sodium (DSS)-induced colitis in mice. RESULTS GSEA indicated that BAG3, P4HB and TP53INP2 were involved in the inflammatory response and TNF-α signalling via nuclear factor kappa-B. Furthermore, polymerase chain reaction results showed significantly higher mRNA levels of BAG3 and P4HB and lower mRNA levels of FMR1 and TP53INP2 in the DSS group compared to the control group. CONCLUSION This study identified four m6A-ARGs that predict the occurrence of UC, thus providing a scientific reference for further studies on the pathogenesis of UC.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, Long Hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zi-Xuan Liu
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - You-Lan Chen
- Department of Gastroenterology, Shu Guang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren-Ye Que
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Hong-Yan Cao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| |
Collapse
|
5
|
Gong B, Huang Y, Wang Z, Wan B, Zeng Y, Lv C. BAG3 as a novel prognostic biomarker in kidney renal clear cell carcinoma correlating with immune infiltrates. Eur J Med Res 2024; 29:93. [PMID: 38297320 PMCID: PMC10832118 DOI: 10.1186/s40001-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE BCL-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein that plays an essential role in the onset and progression of multiple cancer types. However, the clinical significance of BAG3 in kidney renal clear cell carcinoma (KIRC) remains unclear. METHODS Using Tumor IMmune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) database, we explored the expression, prognostic value, and clinical correlations of BAG3 in KIRC. In addition, immunohistochemistry (IHC) of HKH cohort further validated the expression of BAG3 in KIRC and its impact on prognosis. Gene Set Cancer Analysis (GSCA) was utilized to scrutinize the prognostic value of BAG3 methylation. Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to identify potential biological functions of BAG3 in KIRC. Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between BAG3 expression and immune cell infiltration. RESULTS BAG3 mRNA expression and protein expression were significantly downregulated in KIRC tissues compared to normal kidney tissues, associated with adverse clinical-pathological factors and poor clinical prognosis. Multivariate Cox regression analysis indicated that low expression of BAG3 was an independent prognostic factor in KIRC patients. GSEA analysis showed that BAG3 is mainly involved in DNA methylation and the immune-related pathways in KIRC. In addition, the expression of BAG3 is closely related to immune cell infiltration and immune cell marker set. CONCLUSION BAG3 might be a potential therapeutic target and valuable prognostic biomarker of KIRC and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yuan Huang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Zhenting Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China.
| |
Collapse
|
6
|
Wang ZM, Zhang L, Ren DH, Zhang CY, Zheng HC. Bioinformatics analysis of the clinicopathological and prognostic significance of BAG3 mRNA in gynecological cancers. J OBSTET GYNAECOL 2023; 43:2228899. [PMID: 37377218 DOI: 10.1080/01443615.2023.2228899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BAG3 is a co-chaperone BAG family protein that plays important roles in protein homeostasis, cell survival, cell motility, and tumour metastasis. This study aimed to clarify the clinicopathological and prognostic implications of BAG3 mRNA expression in tumours. We performed bioinformatics analysis on BAG3 mRNA expression using TCGA, XIANTAO, UALCAN, and Kaplan-Meier plotter databases. BAG3 mRNA expression was downregulated in breast and endometrial cancers and positively correlated with favourable PAM50 subtyping in breast cancer,clinical stage and short overall survival in ovarian cancer and negatively correlated with T stage, clinical stage, and histological grade in cervical and endometrial cancers. The top BAG3-related pathways included ligand-receptor interactions and activity, DNA packaging and nucleosomes, hormonal responses, membrane regions, microdomains and rafts, and endosomes in breast cancer; ligand-receptor interactions, transmembrane transporters and channels, cell adhesion, and keratinisation in cervical cancer; ligand-receptor interactions, anion transmembrane transporters, lipoproteins, keratinisation, cell adhesion, and protein processing in endometrial cancer; metabolism of porphyrin, chlorophyll, pentose, uronic acid, ascorbate, and alternate and cell adhesion in ovarian cancer. BAG3 expression could represent a potential marker for carcinogenesis, histogenesis, aggressive behaviours, and prognosis in gynecological cancers.IMPACT STATEMENTWhat is already known on this subject? BAG3 regulates cell activity, autophagy, and resistance to apoptosis through multiple domains and plays an important role in tumour development. BAG3 positively regulates tumour cell invasion and migration in cervical and ovarian cancers.What do the results of this study add? BAG3 expression is closely associated with histogenesis, clinicopathology, and prognosis in gynecological cancers and is involved in signalling pathways associated with the control of cell proliferation, migration, invasion, and drug resistance in tumours.What are the implications of these findings for clinical practice and/or further research? Abnormal BAG3 expression can be employed as a possible marker of tumour development, invasion, and prognosis, providing new ideas for treating cancer.
Collapse
Affiliation(s)
- Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Dong-Hui Ren
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Kong L, Xu F, Yao Y, Gao Z, Tian P, Zhuang S, Wu D, Li T, Cai Y, Li J. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol 2023; 13:1142755. [PMID: 37469398 PMCID: PMC10352483 DOI: 10.3389/fonc.2023.1142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Ovarian cancer (OVCA) is one of the most prevalent malignant tumors of the female reproductive system, and its diagnosis is typically accompanied by the production of ascites. Although liquid biopsy has been widely implemented recently, the diagnosis or prognosis of OVCA based on liquid biopsy remains the primary emphasis. Methods In this study, using proximity barcoding assay, a technique for analyzing the surface proteins on single extracellular vesicles (EVs). For validation, serum and ascites samples from patients with epithelial ovarian cancer (EOC) were collected, and their levels of CDCP1 was determined by enzyme-linked immunosorbent assay. Tissue chips were prepared to analyze the relationship between different expression levels of CDCP1 and the prognosis of ovarian cancer patients. Results We discovered that the CUB domain-containing protein 1+ (CDCP1+) EVs subcluster was higher in the ascites of OVCA patients compared to benign ascites. At the same time, the level of CDCP1 was considerably elevated in the ascites of OVCA patients. The overall survival and disease-free survival of the group with high CDCP1 expression in EOC were significantly lower than those of the group with low expression. In addition, the receiver operating characteristic curve demonstrates that EVs-derived CDCP1 was a biomarker of early response in OVCA ascites. Discussion Our findings identified a CDCP1+ EVs subcluster in the ascites of OVCA patients as a possible biomarker for EOC prevention.
Collapse
Affiliation(s)
- Lingnan Kong
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Famei Xu
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Yukuan Yao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Zhihui Gao
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Peng Tian
- Department of Ultrasonic, Zibo Central Hospital, Zibo, China
| | - Shichao Zhuang
- Department of Gynecology, Zibo Central Hospital, Zibo, China
| | - Di Wu
- Department of R&D, Shenzhen SecreTech Co., Ltd., Shenzhen, China
- Department of R&D, Vesicode AB, Solna, Sweden
| | - Tangyue Li
- Department of Pathology, Zibo Central Hospital, Zibo, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Li
- Department of Pathology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
8
|
Bahari Khasraghi L, Nouri M, Vazirzadeh M, Hashemipour N, Talebi M, Aghaei Zarch F, Majidpoor J, Kalhor K, Farnia P, Najafi S, Aghaei Zarch SM. MicroRNA-206 in human cancer: Mechanistic and clinical perspectives. Cell Signal 2023; 101:110525. [PMID: 36400383 DOI: 10.1016/j.cellsig.2022.110525] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.
Collapse
Affiliation(s)
- Leila Bahari Khasraghi
- 15 khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Nouri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Poopak Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Protein Quality Control in Glioblastoma: A Review of the Current Literature with New Perspectives on Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179734. [PMID: 36077131 PMCID: PMC9456419 DOI: 10.3390/ijms23179734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Protein quality control allows eukaryotes to maintain proteostasis under the stress of constantly changing conditions. In this review, we discuss the current literature on PQC, highlighting flaws that must exist for malignancy to occur. At the nidus of PQC, the expression of BAG1-6 reflects the cell environment; each isoform directs proteins toward different, parallel branches of the quality control cascade. The sum of these branches creates a net shift toward either homeostasis or apoptosis. With an established role in ALP, Bag3 is necessary for cell survival in stress conditions including those of the cancerous niche (i.e., hypoxia, hypermutation). Evidence suggests that excessive Bag3–HSP70 activity not only sustains, but also propagates cancers. Its role is anti-apoptotic—which allows malignant cells to persist—and intercellular—with the production of infectious ‘oncosomes’ enabling cancer expansion and recurrence. While Bag3 has been identified as a key prognostic indicator in several cancer types, its investigation is limited regarding glioblastoma. The cochaperone HSP70 has been strongly linked with GBM, while ALP inhibitors have been shown to improve GBM susceptibility to chemotherapeutics. Given the highly resilient, frequently recurrent nature of GBM, the targeting of Bag3 is a necessary consideration for the successful and definitive treatment of GBM.
Collapse
|
10
|
Liu Q, Liu J, Huang X. Unraveling the mystery: How bad is BAG3 in hematological malignancies? Biochim Biophys Acta Rev Cancer 2022; 1877:188781. [PMID: 35985611 DOI: 10.1016/j.bbcan.2022.188781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
BAG3, also known as BIS and CAIR-1, interacts with Hsp70 via its BAG domain and with other molecules through its WW domain, PXXP repeats and IPV motifs. BAG3 can participate in major cellular pathways including apoptosis, autophagy, cytoskeleton structure, and motility by regulating the expression, location, and activity of its chaperone proteins. As a multifunctional protein, BAG3 is highly expressed in skeletal muscle, cardiomyocytes and multiple tumors, and its intracellular expression can be stimulated by stress. The functions and mechanisms of BAG3 in hematological malignancies have recently been a topic of interest. BAG3 has been confirmed to be involved in the development and chemoresistance of hematological malignancies and to act as a prognostic indicator. Modulation of BAG3 and its corresponding proteins has thus emerged as a promising therapeutic and experimental target. In this review, we consider the characteristics of BAG3 in hematological malignancies as a reference for further clinical and fundamental investigations.
Collapse
Affiliation(s)
- Qinghan Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinde Liu
- Department of Respiratory, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xinyue Huang
- The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
12
|
Tan L, Qu W, Wu D, Liu M, Ai Q, Hu H, Wang Q, Chen W, Zhou H. The interferon regulatory factor 6 promotes cisplatin sensitivity in colorectal cancer. Bioengineered 2022; 13:10504-10517. [PMID: 35443865 PMCID: PMC9161955 DOI: 10.1080/21655979.2022.2062103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and causes of cancer-related mortality worldwide. Cell proliferation and tumor metastasis as well as chemoresistance are correlated with poor survival of CRC. The interferon regulatory factor 6 (IRF6) is functioned as a tumor suppressor gene in several cancers and is associated with risk of CRC. We explored the role of IRF6 in CRC in the present study. The protein expressions of IRF6 in human CRC tissues, normal para-carcinoma tissue and liver metastases from CRC were measured. Cell proliferation, chemotherapeutic sensitivity, cell apoptosis, migration and invasion including the related markers along with IRF6 expression were explored. Our results indicated that IRF6 expression in CRC and liver metastasis were lower than normal tissues, which were correlated positively with E-cadherin and negatively with Ki67 expression in CRC tissue. IRF6 promoted CRC cell sensitivity to cisplatin to suppress cell proliferation, migration and invasion as well as aggravate cell apoptosis. Our study suggested that IRF6 may enhance chemotherapeutic sensitivity of cisplatin mediated by affecting cell proliferation, migration and invasion along with apoptosis through regulating E-cadherin and Ki67, while the identified molecular mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Lin Tan
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Weiming Qu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Dajun Wu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Minji Liu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Qiongjia Ai
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hongsai Hu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Qian Wang
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Weishun Chen
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hongbing Zhou
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| |
Collapse
|
13
|
Olabayo Olatubosun M, Abubakar MB, Batiha GES, Malami I, Ibrahim KG, Abubakar B, Bello MB, Alexiou A, Imam MU. LncRNA SNHG15: A potential therapeutic target in the treatment of colorectal cancer. Chem Biol Drug Des 2022; 101:1138-1150. [PMID: 35191201 DOI: 10.1111/cbdd.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.
Collapse
Affiliation(s)
- Mutolib Olabayo Olatubosun
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| |
Collapse
|
14
|
Al-Harazi O, Kaya IH, El Allali A, Colak D. A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer. Front Genet 2021; 12:721949. [PMID: 34790220 PMCID: PMC8591094 DOI: 10.3389/fgene.2021.721949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of reliable methods for identification of robust biomarkers for complex diseases is critical for disease diagnosis and prognosis efforts. Integrating multi-omics data with protein-protein interaction (PPI) networks to investigate diseases may help better understand disease characteristics at the molecular level. In this study, we developed and tested a novel network-based method to detect subnetwork markers for patients with colorectal cancer (CRC). We performed an integrated omics analysis using whole-genome gene expression profiling and copy number alterations (CNAs) datasets followed by building a gene interaction network for the significantly altered genes. We then clustered the constructed gene network into subnetworks and assigned a score for each significant subnetwork. We developed a support vector machine (SVM) classifier using these scores as feature values and tested the methodology in independent CRC transcriptomic datasets. The network analysis resulted in 15 subnetwork markers that revealed several hub genes that may play a significant role in colorectal cancer, including PTP4A3, FGFR2, PTX3, AURKA, FEN1, INHBA, and YES1. The 15-subnetwork classifier displayed over 98 percent accuracy in detecting patients with CRC. In comparison to individual gene biomarkers, subnetwork markers based on integrated multi-omics and network analyses may lead to better disease classification, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Dilek Colak
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Lu J, Gu B, Lu W, Liu J, Lu J. miR-142-5p regulates lipopolysaccharide-induced bovine epithelial cell proliferation and apoptosis via targeting BAG5. Exp Ther Med 2021; 22:1425. [PMID: 34707706 PMCID: PMC8543189 DOI: 10.3892/etm.2021.10860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine mastitis is a threat to the health of the dairy cow. MicroRNAs (miRs) serve an important role in the progression of bovine mastitis, regulating immune and defense responses. The present study aimed to investigate the possible effects and mechanisms of bovine mastitis underlying miR-142-5p and Bcl-2 associated athanogene 5 (BAG5) in in vitro lipopolysaccharide (LPS)-induced models. Reverse transcription-quantitative PCR and western blotting were performed to determine mRNA and protein expression levels, respectively. ELISAs were conducted to assess the levels of cytokines and an immunofluorescence assay was performed to determine the expression of BAG5. Cell Counting Kit-8, clone formation and 5-ethynyl-2'-deoxyuridine assays were conducted to determine cell viability and proliferation of bovine mammary epithelial MAC-T cells, respectively. Flow cytometry was performed to measure MAC-T cell cycle distribution and apoptosis, and a luciferase assay was conducted to verify whether BAG5 was a target of miR-142-5p. The results indicated that miR-142-5p was upregulated in MAC-T cells treated with LPS compared with the control group. miR-142-5p mimics transfection significantly activated the cytokines TNF-α, IL-1β, IL-6 and IL-8, and significantly increased the expression levels of NF-κB signaling pathway-related proteins in LPS-treated cells. The luciferase activity of MAC-T cells treated with miR-142-5p mimics and BAG5 3'untranslated region wild type decreased, compared with mutant type. By contrast, BAG5 overexpression significantly downregulated the levels of cytokines, including TNF-α, IL-1β, IL-6 and IL-8, in LPS-treated cells. BAG5 overexpression significantly promoted cell proliferation and viability, decreased apoptosis, and regulated Caspase-3, Caspase-9, Bcl-2 and Bax expression in LPS-treated MAC-T cells, which was significantly reversed by transfection with miR-142-5p mimics. In conclusion, the results of the present study suggested that miR-142-5p may promote the progression of bovine mastitis via targeting BAG5. Therefore, the present study provided the foundations for future investigations.
Collapse
Affiliation(s)
- Jinye Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Beibei Gu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Liu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Jiang Lu
- Laboratory of Animal Immunonutrition, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
16
|
Targeting of HSP70/HSF1 Axis Abrogates In Vitro Ibrutinib-Resistance in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13215453. [PMID: 34771616 PMCID: PMC8582437 DOI: 10.3390/cancers13215453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The use of ibrutinib has changed the management and clinical history of patients with multiple-treated chronic lymphocytic leukemia (CLL). Nevertheless, an increasing number of patients develop resistance to treatment, with mechanisms still to be fully clarified. Since HSP70 plays a pivotal role in mediating the survival and the progression of CLL, we herein addressed the role of HSP70 and its regulator HSF1 in the development of ibrutinib-mediated resistance. We found an increase in both proteins when the treatment was failing, and thus the disease was progressing. This suggests the involvement of HSP70 in mechanisms of drug resistance. Moreover, we demonstrated that the use, at different levels, of HSP70/HSF1 axis inhibitors could represent a novel rational therapeutic approach to overcome ibrutinib resistance in those patients who relapsed after this type of treatment. Abstract The Btk inhibitor ibrutinib has significantly changed the management of chronic lymphocytic leukemia (CLL) patients. Despite its clinical efficacy, relapses occur, and outcomes after ibrutinib failure are poor. Although BTK and PLCγ2 mutations have been found to be associated with ibrutinib resistance in a fair percentage of CLL patients, no information on resistance mechanisms is available in patients lacking these mutations. The heat shock protein of 70 kDa (HSP70) and its transcription factor heat shock factor 1 (HSF1) play a role in mediating the survival and progression of CLL, as well as taking part in drug resistance in various cancers. We demonstrated that resveratrol and related phenols were able to induce apoptosis in vitro in leukemic cells from CLL untreated patients by acting on the HSP70/HSF1 axis. The same was achieved in cells recovered from 13 CLL patients failing in vivo ibrutinib treatment. HSP70 and HSF1 levels decreased following in vitro treatment, correlating to apoptosis induction. We suggest an involvement of HSP70/HSF1 axis in controlling resistance to ibrutinib in CLL cells, since their inhibition is effective in inducing in vitro apoptosis in cells from ibrutinib refractory patients. The targeting of HSP70/HSF1 axis could represent a novel rational therapeutic strategy for CLL, also for relapsing patients.
Collapse
|
17
|
Fan J, Feng Y, Cheng Y, Wang Z, Zhao H, Galan EA, Liao Q, Cui S, Zhang W, Ma S. Multiplex gene quantification as digital markers for extremely rapid evaluation of chemo-drug sensitivity. PATTERNS 2021; 2:100360. [PMID: 34693378 PMCID: PMC8515010 DOI: 10.1016/j.patter.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation. The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1–3 h after tumor sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the performance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and corresponding graphic user interface were developed to demonstrate the promise of digital markers for extremely rapid drug recommendation. Non-targeted multiplex genes are screened as digital markers for drug sensitivity Transcription level cohort of 10s to 100s genes predicts drug sensitivity Digital markers are quantified using qRT-PCR within 1–3 h Digital markers guide extremely rapid chemo-drug uses after patient hospitalization
In clinical cancer medicine, many patients require immediate chemotherapy after hospitalization. Current administrations for precision drug uses are limited in evaluation speed, including genomic sequencing and tumor organoid evaluation. An extremely rapid evaluation protocol is in high demand to realize drug recommendation within a few hours after tumor sampling. In this work, we have proposed an approach for extremely rapid and personalized drug recommendation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| | - Yilin Feng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Yifan Cheng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Haoran Zhao
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Quanxing Liao
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaohua Ma
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Li K, Deng X, Feng G, Chen Y. Knockdown of Bcl-2-Associated Athanogene-3 Can Enhance the Efficacy of BGJ398 via Suppressing Migration and Inducing Apoptosis in Gastric Cancer. Dig Dis Sci 2021; 66:3036-3044. [PMID: 33089486 DOI: 10.1007/s10620-020-06640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies of the digestive tract worldwide, and cancer cell resistance against anticancer drugs remains a major challenge for GC treatment. Nvp-BGJ398 (BGJ398) is considered as a common drug for cancer treatment; however, Bcl-2-associated athanogene-3 (BAG3) plays an important role in drug resistance. AIMS To investigate the function of BAG3 on the sensitivity of GC cells to BGJ398. METHODS The expression of BAG3 in GC cells and GC resistance cells was examined by qRT-PCR and western blot. The resistance to BGJ398 was detected by viability assay, and a half-maximal inhibitory concentration (IC50) was calculated. The cell migration and apoptosis were determined by wound-healing assay and flow cytometry assay. RESULTS BAG3 was highly expressed in drug-resistant cells Fu97R and Snu16R. BAG3 was also associated with sensitivity of Snu16 cells to BGJ398, promoting migration but inhibiting apoptosis. However, knockdown of heat shock transcription factor 1 (HSF1) suppressed BAG3 expression and lowered the sensitivity to BGJ398 in Snu16R cells. Knockdown of BAG3 inhibited tumor growth and cell apoptosis but induced cell apoptosis and amplified the sensitivity to BGJ398 in Snu16R cells, followed by enhancing BGJ398-induced antitumor function in a Snu16R-derived xenograft mouse model. CONCLUSION The mechanism of resistance to BGJ398 in GC is mediated by BAG3/HSF1, and combined treatment with shBAG3 could improve the efficacy of BGJ398 in GC. Thus, BAG3-targeted therapy improves the antitumor efficacy of BGJ398, which might provide a novel therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ke Li
- Department of General Surgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Jiangbei District, Chongqing, 400000, China
| | - Xiang Deng
- Department of General Surgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Jiangbei District, Chongqing, 400000, China
| | - Guangjing Feng
- Department of General Surgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Jiangbei District, Chongqing, 400000, China.
| | - Yi Chen
- Department of General Surgery, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Jiangbei District, Chongqing, 400000, China
| |
Collapse
|
19
|
Kumar P, Jagtap YA, Patwa SM, Kinger S, Dubey AR, Prajapati VK, Dhiman R, Poluri KM, Mishra A. Autophagy based cellular physiological strategies target oncogenic progression. J Cell Physiol 2021; 237:258-277. [PMID: 34448206 DOI: 10.1002/jcp.30567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Evidence accumulated from past findings indicates that defective proteostasis may contribute to risk factors for cancer generation. Irregular assembly of abnormal proteins catalyzes the disturbance of cellular proteostasis and induces the ability of abnormal cellular proliferation. The autophagy mechanism plays a key role in the regular clearance of abnormal/poor lipids, proteins, and various cellular organelles. The results of functional and effective autophagy deliver normal cellular homeostasis, which establishes supportive metabolism and avoids unexpected tumorigenesis events. Still, the precise molecular mechanism of autophagy in tumor suppression has not been clear. How autophagy triggers selective or nonselective bulk degradation to dissipate tumor promotion under stress conditions is not clear. Under proteotoxic insults to knockdown the drive of tumorigenesis, it is critical for us to figure out the detailed molecular functions of autophagy in human cancers. The current article summarizes autophagy-based theragnostic strategies targeting various phases of tumorigenesis and suggests the preventive roles of autophagy against tumor progression. A better understanding of various molecular partners of autophagic flux will improve and innovate therapeutic approaches based on autophagic-susceptible effects against cellular oncogenic transformation.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som Mohanlal Patwa
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
20
|
Li X, Lin G, Liu T, Zhao N, Xu H, Wang H, Zheng W. Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus. Brain Struct Funct 2021; 226:2629-2650. [PMID: 34357438 DOI: 10.1007/s00429-021-02356-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The decreased efficiency of autophagic processing in the central nervous system during aging may be a contributing factor in neurodegenerative diseases. BAG3 (Bcl2 associated athanogene 3) is a major member of the BAG family of co-molecular chaperones that mediate selective macroautophagy. Therefore, we analyzed the expression and distribution of BAG3 in the brain at postnatal 0 day (P0), P15, 1-, 2-, 9-, 12-, and 18 month-old C57BL/6 mice, thus covering almost all ages. Except for a significant steep drop in mRNA and protein levels in the cortex and hippocampus soon after birth, there were minimal differences in the expression and distribution of BAG3 among P15, M1, M2, M9, and M12 mice; however, at 18 months, BAG3 expression was significantly higher. Immunohistochemical analyses showed that BAG3 is mainly located in the neuronal cytoplasm and processes in C57BL/6 the cerebral cortex and hippocampus from P0 to M18 postnatal development. These findings indicate that BAG3 might be stable in young and middle-aged mice, but unstable in aged mice.
Collapse
Affiliation(s)
- Xinlu Li
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China
| | - Geng Lin
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China
| | - Tongtong Liu
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China.,Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Ning Zhao
- Department of Infectious Diseases, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, 110022, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, 518052, China
| | - Huaqin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
21
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
22
|
Martin TG, Tawfik S, Moravec CS, Pak TR, Kirk JA. BAG3 expression and sarcomere localization in the human heart are linked to HSF-1 and are differentially affected by sex and disease. Am J Physiol Heart Circ Physiol 2021; 320:H2339-H2350. [PMID: 33989081 DOI: 10.1152/ajpheart.00419.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations to the sarcomere-localized cochaperone protein Bcl2-associated athanogene 3 (BAG3) are associated with dilated cardiomyopathy (DCM) and display greater penetrance in male patients. Decreased protein expression of BAG3 is also associated with nongenetic heart failure; however, the factors regulating cardiac BAG3 expression are unknown. Using left ventricular (LV) tissue from nonfailing and DCM human samples, we found that whole LV BAG3 expression was not significantly impacted by DCM or sex; however, myofilament localized BAG3 was significantly decreased in males with DCM. Females with DCM displayed no changes in BAG3 compared with nonfailing. This sex difference appears to be estrogen independent, as estrogen treatment in ovariectomized female rats had no impact on BAG3 expression. BAG3 gene expression in noncardiac cells is primarily regulated by the heat shock transcription factor-1 (HSF-1). We show whole LV HSF-1 expression and nuclear localized/active HSF-1 each displayed a striking positive correlation with whole LV BAG3 expression. We further found that HSF-1 localizes to the sarcomere Z-disc in cardiomyocytes and that this myofilament-associated HSF-1 pool decreases in heart failure. The decrease of HSF-1 was more pronounced in male patients and tightly correlated with myofilament BAG3 expression. Together our findings indicate that cardiac BAG3 expression and myofilament localization are differentially impacted by sex and disease and are linked to HSF-1.NEW & NOTEWORTHY Myofilament BAG3 expression decreases in male patients with nonischemic DCM but is preserved in female patients with DCM. BAG3 expression in the human heart is tightly linked to HSF-1 expression and nuclear translocation. HSF-1 localizes to the sarcomere Z-disc in the human heart. HSF-1 expression in the myofilament fraction decreases in male patients with DCM and positively correlates with myofilament BAG3.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Sara Tawfik
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
23
|
Kotawong K, Chajaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:909-918. [PMID: 33773557 PMCID: PMC8286696 DOI: 10.31557/apjcp.2021.22.3.909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE β-eudesmol is the active compound isolated from Atractylodes lancea (Thunb) D.C. The actions of this compound against cholangiocarcinoma (CCA) cells include anti-angiogenesis and anti-cell proliferation and growth. For more understanding of the molecular targets of action of β-eudesmol, the CCA cells (CL-6) were exposed to β-eudesmol for 24 and 48 hours. METHODS Proteins and metabolites from the intra- and extra-cellular components of the CL-6 cells were extracted and identified by LC-MS/MS. Protein analysis was performed using the Venn diagram (protein grouping), PANTHER (gene ontology), and STITCH software (protein-protein interaction). Metabolite analysis including their interactions with proteins, was performed using MetaboAnalyst software. RESULTS The analysis showed that the actions of β-eudesmol were associated with various biological processes particularly apoptosis and cell cycle. These included blood coagulation, wound healing, DNA repair, PI3K-Akt signaling pathway, immune system process, MAPK cascade, urea cycle, purine metabolism, ammonia recycling, and methionine metabolism. CONCLUSION Possible molecular targets of action of β-eudesmol against CL-6 for cell apoptosis induction were TNFRSf6, cytochrome C, BAX3, DHCR24, CD29, and ATP. On the other hand, possible targets for cell cycle arrest induction were CDKN2B, MLF1, TFDP2, CDK11-p110, and nicotinamide.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Wanna Chajaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| |
Collapse
|
24
|
Albuquerque-Souza E, Schulte F, Chen T, Hardt M, Hasturk H, Van Dyke TE, Holzhausen M, Kantarci A. Maresin-1 and Resolvin E1 Promote Regenerative Properties of Periodontal Ligament Stem Cells Under Inflammatory Conditions. Front Immunol 2020; 11:585530. [PMID: 33101318 PMCID: PMC7546375 DOI: 10.3389/fimmu.2020.585530] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Maresin-1 (MaR1) and Resolvin E1 (RvE1) are specialized pro-resolving lipid mediators (SPMs) that regulate inflammatory processes. We have previously demonstrated the hard and soft tissue regenerative capacity of RvE1 in an in vivo model of the periodontal disease characterized by inflammatory tissue destruction. Regeneration of periodontal tissues requires a well-orchestrated process mediated by periodontal ligament stem cells. However, limited data are available on how SPMs can regulate the regenerative properties of human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. Thus, we measured the impact of MaR1 and RvE1 in an in vitro model of hPDLSC under stimulation with IL-1β and TNF-α by evaluating pluripotency, migration, viability/cell death, periodontal ligament markers (α-smooth muscle actin, tenomodulin, and periostin), cementogenic-osteogenic differentiation, and phosphoproteomic perturbations. The data showed that the pro-inflammatory milieu suppresses pluripotency, viability, and migration of hPDLSCs; MaR1 and RvE1 both restored regenerative capacity by increasing hPDLSC viability, accelerating wound healing/migration, and up-regulating periodontal ligament markers and cementogenic-osteogenic differentiation. Protein phosphorylation perturbations were associated with the SPM-induced regenerative capacity of hPDLSCs. Together, these results demonstrate that MaR1 and RvE1 restore or improve the regenerative properties of highly specialized stem cells when inflammation is present and offer opportunities for direct pharmacologic treatment of lost tissue integrity.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- The Forsyth Institute, Cambridge, MA, United States.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | | | | | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
25
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
26
|
At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020; 9:cells9030574. [PMID: 32121220 PMCID: PMC7140512 DOI: 10.3390/cells9030574] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
BAG3, a multifunctional HSP70 co-chaperone and anti-apoptotic protein that interacts with the ATPase domain of HSP70 through its C-terminal BAG domain plays a key physiological role in cellular proteostasis. The HSP70/BAG3 complex determines the levels of a large number of selective client proteins by regulating their turnover via the two major protein degradation pathways, i.e. proteasomal degradation and macroautophagy. On the one hand, BAG3 competes with BAG1 for binding to HSP70, thereby preventing the proteasomal degradation of its client proteins. By functionally interacting with HSP70 and LC3, BAG3 also delivers polyubiquitinated proteins to the autophagy pathway. BAG3 exerts a number of key physiological functions, including an involvement in cellular stress responses, proteostasis, cell death regulation, development, and cytoskeletal dynamics. Conversely, aberrant BAG3 function/expression has pathophysiological relevance correlated to cardiomyopathies, neurodegeneration, and cancer. Evidence obtained in recent years underscores the fact that BAG3 drives several key hallmarks of cancer, including cell adhesion, metastasis, angiogenesis, enhanced autophagic activity, and apoptosis inhibition. This review provides a state-of-the-art overview on the role of BAG3 in stress and therapy resistance of cancer, with a particular focus on BAG3-dependent modulation of apoptotic signaling and autophagic/lysosomal activity.
Collapse
|
27
|
Zhang PF, Wu J, Luo JH, Li KS, Wang F, Huang W, Wu Y, Gao SP, Zhang XM, Zhang PN. SNHG22 overexpression indicates poor prognosis and induces chemotherapy resistance via the miR-2467/Gal-1 signaling pathway in epithelial ovarian carcinoma. Aging (Albany NY) 2019; 11:8204-8216. [PMID: 31581131 PMCID: PMC6814594 DOI: 10.18632/aging.102313] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Recently, an increasing number of studies have reported that dysregulation of long noncoding RNAs (lncRNAs) plays an important role in cancer initiation and progression, including in epithelial ovarian carcinoma (EOC). However, little is known about the detailed biological functions of the lncRNA small nucleolar RNA host gene 22 (SNHG22) during the progression of EOC. Here, we found that SNHG22 was significantly increased in EOC tissues and was significantly associated with a low level of differentiation. Forced SNHG22 expression promoted chemotherapy resistance in EOC cells. Knockdown of SNHG22 expression increased the sensitivity of EOC cells to cisplatin and paclitaxel. Importantly, we found that SNHG22 could directly interact with miR-2467 and lead to the release of miR-2467-targeted Gal-1 mRNA. Moreover, SNHG22 overexpression induced EOC cell resistance to chemotherapy agents via PI3K/AKT and ERK cascade activation. In summary, our findings demonstrate that SNHG22 plays a critical role in the chemotherapy resistance of EOC by mediating the miR-2467/Gal-1 regulatory axis.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Hong Luo
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke-Sang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yin Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shui-Ping Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng-Nan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
28
|
Basile A, De Marco M, Festa M, Falco A, Iorio V, Guerriero L, Eletto D, Rea D, Arra C, Lamolinara A, Ballerini P, Damiani V, Rosati A, Sala G, Turco MC, Marzullo L, De Laurenzi V. Development of an anti-BAG3 humanized antibody for treatment of pancreatic cancer. Mol Oncol 2019; 13:1388-1399. [PMID: 30973679 PMCID: PMC6547619 DOI: 10.1002/1878-0261.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that secreted BAG3 is a potential target for the treatment of pancreatic ductal adenocarcinoma and that pancreatic tumor growth and metastatic dissemination can be reduced by treatment with an anti-BAG3 murine antibody. Here, we used complementarity-determining region (CDR) grafting to generate a humanized version of the anti-BAG3 antibody that may be further developed for possible clinical use. We show that the humanized anti-BAG3 antibody, named BAG3-H2L4, abrogates BAG3 binding to macrophages and subsequent release of IL-6. Furthermore, it specifically localizes into tumor tissues and significantly inhibits the growth of Mia PaCa-2 pancreatic cancer cell xenografts. We propose BAG3-H2L4 antibody as a potential clinical candidate for BAG3-targeted therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Anna Basile
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Margot De Marco
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Michelina Festa
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of PharmacyUniversity of SalernoFiscianoItaly
| | - Antonia Falco
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of PharmacyUniversity of SalernoFiscianoItaly
| | - Vittoria Iorio
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Luana Guerriero
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
| | - Daniela Eletto
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Domenica Rea
- S.S.D. Sperimentazione AnimaleIstituto Nazionale Tumori “IRCCS” Fondazione G. PascaleNaplesItaly
| | - Claudio Arra
- S.S.D. Sperimentazione AnimaleIstituto Nazionale Tumori “IRCCS” Fondazione G. PascaleNaplesItaly
| | - Alessia Lamolinara
- Dipartimento di Scienze MedicheOrali e BiotecnologicheCentro Studi sull'InvecchiamentoCeSI‐MeTUniversity ‘G. d'Annunzio’ di Chieti‐PescaraItaly
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI‐MeT)‘G. d'Annunzio’ University of ChietiItaly
| | - Verena Damiani
- Dipartimento di Scienze MedicheOrali e BiotecnologicheCentro Studi sull'InvecchiamentoCeSI‐MeTUniversity ‘G. d'Annunzio’ di Chieti‐PescaraItaly
| | - Alessandra Rosati
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Gianluca Sala
- Dipartimento di Scienze MedicheOrali e BiotecnologicheCentro Studi sull'InvecchiamentoCeSI‐MeTUniversity ‘G. d'Annunzio’ di Chieti‐PescaraItaly
| | - Maria Caterina Turco
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Liberato Marzullo
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiItaly
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l.R&D DivisionUniversity of SalernoBaronissiItaly
- Dipartimento di Scienze MedicheOrali e BiotecnologicheCentro Studi sull'InvecchiamentoCeSI‐MeTUniversity ‘G. d'Annunzio’ di Chieti‐PescaraItaly
| |
Collapse
|
29
|
SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:172. [PMID: 31014355 PMCID: PMC6480895 DOI: 10.1186/s13046-019-1169-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
Background Thousands of long noncoding RNAs (lncRNAs) are aberrantly expressed in various types of cancers, however our understanding of their role in the disease is still very limited. Methods We applied RNAseq analysis from patient-derived data with validation in independent cohort of patients. We followed these studies with gene regulation analysis as well as experimental dissection of the role of the identified lncRNA by multiple in vitro and in vivo methods. Results We analyzed RNA-seq data from tumors of 456 CRC patients compared to normal samples, and identified SNHG15 as a potentially oncogenic lncRNA that encodes a snoRNA in one of its introns. The processed SNHG15 is overexpressed in CRC tumors and its expression is highly correlated with poor survival of patients. Interestingly, SNHG15 is more highly expressed in tumors with high levels of MYC expression, while MYC protein binds to two E-box motifs on SNHG15 sequence, indicating that SNHG15 transcription is directly regulated by the oncogene MYC. The depletion of SNHG15 by siRNA or CRISPR-Cas9 inhibits cell proliferation and invasion, decreases colony formation as well as the tumorigenic capacity of CRC cells, whereas its overexpression leads to opposite effects. Gene expression analysis performed upon SNHG15 inhibition showed changes in multiple relevant genes implicated in cancer progression, including MYC, NRAS, BAG3 or ERBB3. Several of these genes are functionally related to AIF, a protein that we found to specifically interact with SNHG15, suggesting that the SNHG15 acts, at least in part, by regulating the activity of AIF. Interestingly, ROS levels, which are directly regulated by AIF, show a significant reduction in SNHG15-depleted cells. Moreover, knockdown of SNHG15 increases the sensitiveness of the cells to 5-FU, while its overexpression renders them more resistant to the chemotherapeutic drug. Conclusion Altogether, these results describe an important role of SNHG15 in promoting colon cancer and mediating drug resistance, suggesting its potential as prognostic marker and target for RNA-based therapies. Electronic supplementary material The online version of this article (10.1186/s13046-019-1169-0) contains supplementary material, which is available to authorized users.
Collapse
|