1
|
Ndeke JM, Klaunig JE, Commodore S. Nicotine or marijuana vaping exposure during pregnancy and altered immune responses in offspring. JOURNAL OF ENVIRONMENTAL EXPOSURE ASSESSMENT 2024; 3:10.20517/jeea.2024.03. [PMID: 38840831 PMCID: PMC11152453 DOI: 10.20517/jeea.2024.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electronic nicotine delivery systems (ENDS) - which include electronic cigarettes or e-cigarettes, or simply e-cigs, and marijuana vaping have become increasingly popular. ENDS devices have been established as one of the tobacco quit methods and promoted to be safer compared to traditional tobacco cigarettes. Emerging evidence demonstrates that e-cigarette and marijuana vape use can be harmful, with potential associations with cancer. Herein, we summarize the level of evidence to date for altered immune response, with a focus on cancer risks in the offspring after maternal use of, or aerosol exposures from, ENDS or marijuana vape during pregnancy. From 27 published articles retrieved from PubMed, we sought to find out identified carcinogens in ENDS aerosols and marijuana vapor, which cross the placental barrier and can increase cancer risk in the offspring. Carcinogens in vaping aerosols include aldehydes, metals, tobacco-specific nitrosamines, tobacco alkaloids, polycyclic aromatic hydrocarbons, and volatile organic compounds. Additionally, there was only one passive vaping exposure case study on a human fetus, which noted that glycerol, aluminum, chromium, nickel, copper, zinc, selenium, and lead crossed from the mother to the offspring's cord blood. The carcinogens (metals) in that study were at lower concentrations compared to the mother's biological matrices. Lastly, we observed that in utero exposures to ENDS-associated chemicals can occur in vital organs such as the lungs, kidneys, brain, bladder, and heart. Any resulting DNA damage increases the risk of tumorigenesis. Future epidemiological studies are needed to examine the effects of passive aerosol exposures from existing and emerging electronic nicotine and marijuana products on developing offspring to cancer.
Collapse
Affiliation(s)
- Jonas M. Ndeke
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - James E. Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| | - Sarah Commodore
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| |
Collapse
|
2
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
3
|
Godzien J, Lopez-Lopez A, Sieminska J, Jablonowski K, Pietrowska K, Kisluk J, Mojsak M, Dzieciol-Anikiej Z, Barbas C, Reszec J, Kozlowski M, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front Mol Biosci 2024; 10:1279645. [PMID: 38288337 PMCID: PMC10824250 DOI: 10.3389/fmolb.2023.1279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Lopez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Hölle T, Rehn P, Leventogiannis K, Kotsaki A, Kanni T, Antonakos N, Psarrakis C, Damoraki G, Schenz J, Schmitt FCF, Uhle F, Weigand MA, Giamarellos-Bourboulis EJ, Dietrich M. Evaluation of the Novel Sepsis Biomarker Host-Derived Delta-like Canonical Notch Ligand 1-A Secondary Analysis of 405 Patients Suffering from Inflammatory or Infectious Diseases. Int J Mol Sci 2023; 24:ijms24119164. [PMID: 37298115 DOI: 10.3390/ijms24119164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Sepsis is defined as organ failure caused by dysregulated host response to infection. While early antibiotic treatment in patients with acute infection is essential, treating non-infectious patients must be avoided. Current guidelines recommend procalcitonin (PCT) to guide discontinuation of antibiotic treatment. For initiation of therapy, there is currently no recommended biomarker. In this study, we evaluated Host-Derived Delta-like Canonical Notch Ligand 1 (DLL1), a monocyte membrane ligand that has shown promising results in differentiating infectious from non-infectious critically ill patients. Soluble DLL1 levels were measured in plasma samples of six different cohorts. The six cohorts comprise two cohorts with non-infectious inflammatory auto-immune diseases (Hidradenitis Suppurativa, Inflammatory Bowel Disease), one cohort of bacterial skin infection, and three cohorts of suspected systemic infection or sepsis. In total, soluble DLL1 plasma levels of 405 patients were analyzed. Patients were divided into three groups: inflammatory disease, infection, and sepsis (defined according to the Sepsis-3 definition), followed by the evaluation of its diagnostic performance via Area Under the Receiver Operating Characteristics (AUROC) analyses. Patients of the sepsis group showed significantly elevated plasma DLL1 levels compared to patients with uncomplicated infections and sterile inflammation. However, patients with infections had significantly higher DLL1 levels than patients with inflammatory diseases. Diagnostic performance was evaluated and showed better performance for DLL1 for the recognition of sepsis (AUC: 0.823; CI 0.731-0.914) than C-reactive protein (AUC 0.758; CI 0.658-0.857), PCT (AUC 0.593; CI 0.474-0.711) and White Blood Cell count (AUC 0.577; CI 0.46-0.694). DLL1 demonstrated promising results for diagnosing sepsis and was able to differentiate sepsis from other infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias Hölle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Patrick Rehn
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Konstantinos Leventogiannis
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antigone Kotsaki
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodora Kanni
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Psarrakis
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Damoraki
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Felix C F Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | | | - Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
7
|
Ma A, Wang G, Du Y, Guo W, Guo J, Hu Y, Bai D, Huang H, Zhuang L, Chen J, Liu Q. The clinical relevance of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in chronic obstructive pulmonary disease with lung cancer. Front Oncol 2022; 12:902955. [PMID: 36237340 PMCID: PMC9552820 DOI: 10.3389/fonc.2022.902955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic obstructive pulmonary disease (COPD) coexisting with lung cancer is associated with severe mortality and a worse prognosis. Inflammation plays an important role in common pathogenic pathways and disease progression. However, a few studies have identified the clinical value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in COPD with lung cancer, which are systemic inflammatory response markers in the blood. This study aimed to determine the association of the NLR or PLR with clinical characteristics and whether NLR or PLR can be diagnostic markers for COPD with lung cancer.MethodsBetween 2015 and 2021, we conducted a retrospective analysis of 236 COPD patients with lung cancer and 500 patients without lung cancer (control group). Clinical information, blood routine examination, and spirometry results were collected and analyzed. The receiver operating characteristic (ROC) curve was used to identify the best cutoff point of NLR or PLR. Multivariate logistic regression analysis was performed to evaluate the association of NLR or PLR with the diagnosis and prognosis of COPD with lung cancer.ResultsCompared to patients in the COPD-only group, patients in the lung cancer group had a higher percentage of current smoking and emphysema, and it was found that NLR or PLR was significantly higher in the lung cancer group. Multivariate analysis showed that age, smoking status, FEV1%pred, emphysema, NLR, and PLR were independent risk factors for lung cancer development in COPD. Furthermore, the high level of NLR or PLR was associated with age over 70 years old, current smoking status, and ineligible surgery treatment. The level of PLR or NLR markedly increased with hypercoagulation status, the severity of airflow limitation, and advanced progression of lung cancer. Additionally, the ROC analysis also revealed that elevated NLR or PLR was an independent predictor of COPD in lung cancer patients, TNM stages IIIB–IV at first diagnosis in lung cancer, and ineligible surgery in lung cancer patients.ConclusionIncreased NLR or PLR values might be an important and easily measurable inflammation biomarker to predict the diagnosis and severity of lung cancer with COPD.
Collapse
Affiliation(s)
- Aiping Ma
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guangdong Wang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Du
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Weixi Guo
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaxi Guo
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Hu
- Department of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Dongyu Bai
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huiping Huang
- Department of Infection Control, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lianjin Zhuang
- Division of Quality Management, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhan Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Qun Liu, ; Jinhan Chen,
| | - Qun Liu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Qun Liu, ; Jinhan Chen,
| |
Collapse
|
8
|
TLR5 Variants Are Associated with the Risk for COPD and NSCLC Development, Better Overall Survival of the NSCLC Patients and Increased Chemosensitivity in the H1299 Cell Line. Biomedicines 2022; 10:biomedicines10092240. [PMID: 36140341 PMCID: PMC9496592 DOI: 10.3390/biomedicines10092240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is considered as the strongest independent risk factor for lung cancer (LC) development, suggesting an overlapping genetic background in both diseases. A common feature of both diseases is aberrant immunity in respiratory epithelia that is mainly regulated by Toll-like receptors (TLRs), key regulators of innate immunity. The function of the flagellin-sensing TLR5 in airway epithelia and pathophysiology of COPD and LC has remained elusive. We performed case−control genetic association and functional studies on the importance of TLR5 in COPD and LC development, comparing Caucasian COPD/LC patients (n = 974) and healthy donors (n = 1283). Association analysis of three single nucleotide polymorphisms (SNPs) (rs725084, rs2072493_N592S, and rs5744174_F616L) indicated the minor allele of rs2072493_N592S to be associated with increased risk for COPD (OR = 4.41, p < 0.0001) and NSCLC (OR = 5.17, p < 0.0001) development and non-small cell LC risk in the presence of COPD (OR = 1.75, p = 0.0031). The presence of minor alleles (rs5744174 and rs725084) in a co-dominant model was associated with overall survival in squamous cell LC patients. Functional analysis indicated that overexpression of the rs2072493_N592S allele affected the activation of NF-κB and AP-1, which could be attributed to impaired phosphorylation of p38 and ERK. Overexpression of TLR5N592S was associated with increased chemosensitivity in the H1299 cell line. Finally, genome-wide transcriptomic analysis on WI-38 and H1299 cells overexpressing TLR5WT or TLR5N592S, respectively, indicated the existence of different transcription profiles affecting several cellular pathways potentially associated with a dysregulated immune response. Our results suggest that TLR5 could be recognized as a potential biomarker for COPD and LC development with functional relevance.
Collapse
|
9
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
10
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
11
|
Jiang X, Gao Y, Zhang N, Yuan C, Luo Y, Sun W, Zhang J, Ren J, Gong Y, Xie C. Establishment of Immune-related Gene Pair Signature to Predict Lung Adenocarcinoma Prognosis. Cell Transplant 2021; 29:963689720977131. [PMID: 33334139 PMCID: PMC7873765 DOI: 10.1177/0963689720977131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor microenvironment (TME) has critical impacts on the pathogenesis of lung adenocarcinoma (LUAD). However, the molecular mechanism of TME effects on the prognosis of LUAD patients remains unclear. Our study aimed to establish an immune-related gene pair (IRGP) model for prognosis prediction and internal mechanism investigation. Based on 702 TME-related differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) training cohort using the ESTIMATE algorithm, a 10-IRGP signature was established to predict LUAD patient prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs were significantly associated with tumor immune response. In both TCGA training and Gene Expression Omnibus validation datasets, the risk score was an independent prognostic factor for LUAD patients using Lasso-Cox analysis, and patients in the high-risk group had poorer prognosis than those in the low-risk one. In the high-risk group, M2 macrophage and neutrophil infiltrations were higher, while the levels of T cell follicular helpers were significantly lower. The gene set enrichment analysis results showed that DNA repair signaling pathways were involved. In summary, we established an IRGP signature as a potential biomarker to predict the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Wuhan, Hubei, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zhang Y, Tedrow J, Nouraie M, Li X, Chandra D, Bon J, Kass DJ, Fuhrman CR, Leader JK, Duncan SR, Kaminski N, Sciurba FC. Elevated plasma level of Pentraxin 3 is associated with emphysema and mortality in smokers. Thorax 2021; 76:335-342. [PMID: 33479043 DOI: 10.1136/thoraxjnl-2020-215356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Pentraxin 3 (PTX3) influences innate immunity and inflammation, host defence, the complement cascade and angiogenesis. PTX3 expression in lung and blood of subjects with tobacco exposure, and its potential relationship with disease pattern and clinical outcome are poorly understood. METHODS Using independent platforms and cohorts, we identified associations of PTX3 gene expression in lung tissue and plasma from current and former tobacco smokers (with and without chronic obstructive pulmonary disease, COPD) to disease phenotypes including quantitative CT determined emphysema, lung function, symptoms and survival. Two putative regulatory variants of the PTX3 gene were examined for association with COPD manifestations. The relationship between plasma PTX3 and hyaluronic acid levels was further examined. RESULTS PTX3 gene expression in lung tissue was directly correlated with emphysema severity (p<0.0001). Circulating levels of PTX3 were inversely correlated with FEV1 (p=0.006), and positively associated with emphysema severity (p=0.004) and mortality (p=0.008). Two PTX3 gene regulatory variants were associated with a lower risk for emphysema and expiratory airflow obstruction, and plasma levels of PTX3 and hyaluronic acid were related. CONCLUSIONS These data show strong and overlapping associations of lung and blood PTX3 levels, and PTX3 regulatory gene variants, with the severity of airflow obstruction, emphysema and mortality among smokers. These findings have potential implications regarding the pathogenesis of smoking-related lung diseases and warrant further exploration for the use of PTX3 as a predictive biomarker.
Collapse
Affiliation(s)
- Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Tedrow
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pulmonary Medicine and Respiratory Care, St Mary's of Michigan, Kalamazoo, Michigan, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Divay Chandra
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carl R Fuhrman
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Mao X, Tey SK, Yeung CLS, Kwong EML, Fung YME, Chung CYS, Mak L, Wong DKH, Yuen M, Ho JCM, Pang H, Wong MP, Leung CO, Lee TKW, Ma V, Cho WC, Cao P, Xu X, Gao Y, Yam JWP. Nidogen 1-Enriched Extracellular Vesicles Facilitate Extrahepatic Metastasis of Liver Cancer by Activating Pulmonary Fibroblasts to Secrete Tumor Necrosis Factor Receptor 1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002157. [PMID: 33173740 PMCID: PMC7640351 DOI: 10.1002/advs.202002157] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Indexed: 05/24/2023]
Abstract
In hepatocellular carcinoma (HCC) patients with extrahepatic metastasis, the lung is the most frequent site of metastasis. However, how the lung microenvironment favors disseminated cells remains unclear. Here, it is found that nidogen 1 (NID1) in metastatic HCC cell-derived extracellular vesicles (EVs) promotes pre-metastatic niche formation in the lung by enhancing angiogenesis and pulmonary endothelial permeability to facilitate colonization of tumor cells and extrahepatic metastasis. EV-NID1 also activates fibroblasts, which secrete tumor necrosis factor receptor 1 (TNFR1), facilitate lung colonization of tumor cells, and augment HCC cell growth and motility. Administration of anti-TNFR1 antibody effectively diminishes lung metastasis induced by the metastatic HCC cell-derived EVs in mice. In the clinical perspective, analysis of serum EV-NID1 and TNFR1 in HCC patients reveals their positive correlation and association with tumor stages suggesting the potential of these molecules as noninvasive biomarkers for the early detection of HCC. In conclusion, these results demonstrate the interplay of HCC EVs and activated fibroblasts in pre-metastatic niche formation and how blockage of their functions inhibits distant metastasis to the lungs. This study offers promise for the new direction of HCC treatment by targeting oncogenic EV components and their mediated pathways.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Ernest Man Lok Kwong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulamHong Kong
| | - Clive Yik Sham Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Danny Ka Ho Wong
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - James Chung Man Ho
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Herbert Pang
- School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Carmen Oi‐Ning Leung
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Victor Ma
- Department of Clinical OncologyQueen Elizabeth HospitalKowloonHong Kong
| | | | - Peihua Cao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| |
Collapse
|
14
|
Delta-like Canonical Notch Ligand 1 in Patients Following Liver Transplantation-A Secondary Analysis of a Prospective Cohort Study. Diagnostics (Basel) 2020; 10:diagnostics10110894. [PMID: 33142943 PMCID: PMC7693674 DOI: 10.3390/diagnostics10110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
Opportunistic bacterial infections are dreaded risks in patients following liver transplantation (LTX), even though patients receive an antibiotic prophylaxis. The timely recognition of such an infection may be delayed, as culture-based diagnostic methods are linked with a relevant gap in performance. We measured plasma concentrations of Delta-like canonical Notch ligand 1 (DLL1) in 93 adult patients at seven consecutive time points after liver transplantation and correlated the results to the occurrence of culture-proven bacterial infection or a complicated clinical course (composite endpoint of two or more complications: graft rejection or failure, acute kidney failure, acute lung injury, or 90-day mortality). Patients exhibited elevated plasma concentrations after liver transplantation over the whole 28 d observation time. Patients with bacterial infection showed increased DLL1 levels compared to patients without infection. Persistent elevated levels of DLL1 on day 7 and afterward following LTX were able to indicate patients at risk for a complicated course. Plasma levels of DLL1 following LTX may be useful to support an earlier detection of bacterial infections in combination with C-reactive protein (CRP) and procalcitonin (PCT), or they may lead to risk stratification of patients as a single marker for post-operative complications. (Clinical Trial Notation. German Clinical Trials Register: DRKS00005480).
Collapse
|
15
|
Poggiana C, Rossi E, Zamarchi R. Possible role of circulating tumor cells in early detection of lung cancer. J Thorac Dis 2020; 12:3821-3835. [PMID: 32802464 PMCID: PMC7399415 DOI: 10.21037/jtd.2020.02.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of lung cancer varies highly depending on the disease stage at diagnosis, from a 5-year survival rate close to 90% in stage I, to 10% or less in stage IV disease. The enhancement of early diagnosis of this malignancy is mandatory to improve prognosis, because lung cancer patients stay long asymptomatic or few symptomatic after disease onset. Nowadays, liquid biopsy has emerged as a minimally-invasive tool to address the urgent need for real time monitoring, stratification, and personalized treatment of malignancies, including lung cancer. Liquid biopsy refers to a class of biomarkers, including circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA) and tumor-derived extracellular vesicles (tdEV). Since CTCs represent a crucial step in disease progression and metastasis, we reviewed here the scientific literature about the use of CTCs in early diagnosis of lung cancer; different techniques, and different strategies (e.g., source of analysis sample or high-risk groups of patients) were discussed showing the potential of implementing liquid biopsy in the clinical routine of non-metastatic lung cancer.
Collapse
Affiliation(s)
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
16
|
Zhou H, Liu Y, Wang Z, Yang Y, Li M, Yuan D, Zhang X, Li Y. CD147 Promoted Epithelial Mesenchymal Transition in Airway Epithelial Cells Induced by Cigarette Smoke via Oxidative Stress Signaling Pathway. COPD 2020; 17:269-279. [PMID: 32366134 DOI: 10.1080/15412555.2020.1758051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common airway disease, and epithelial mesenchymal transition (EMT) is participated in the pathogenesis of COPD. However, the role of CD147 in COPD remains largely unknown. In order to clarify the role of CD147 in EMT induced by cigarette smoke, we established animal and cell model of EMT by mean of cigarette smoke exposure and detected the expressions of CD147 and EMT markers via PCR, WB and IF. RNA inference was applied to study the role of CD147 in CSE induced EMT in vitro. NAC and H2O2 were used to study oxidative stress signaling pathway in this model. As a result, cigarette smoke exposure upregulated the expressions of CD147, α-SMA, and Vimentin and downregulated the expression of Ecadherin and ZO1 both in vivo and in vitro, which was accompanied by augmented level of oxidative stress. CD147 knockdown would partly inhibit CSE induced EMT, while preincubation of H2O2 could inverse this effect. In conclusion, CD147 promoted EMT in mice and HBE cells induced by cigarette smoke via oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Zhehua Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yang Yang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Mengyu Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Dong Yuan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
17
|
Tsai KYF, Hirschi Budge KM, Llavina S, Davis T, Long M, Bennett A, Sitton B, Arroyo JA, Reynolds PR. RAGE and AXL expression following secondhand smoke (SHS) exposure in mice. Exp Lung Res 2019; 45:297-309. [PMID: 31762322 DOI: 10.1080/01902148.2019.1684596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Aim and Purpose: Tobacco exposure is one of the top three global health risks leading to the development of chronic obstructive pulmonary disease (COPD). Although there is extensive research into the effects of cigarette smoke, the effect of secondhand smoke (SHS) in the lung remains limited. SHS induces receptors for advanced glycation end-products (RAGE) and an inflammatory response that leads to COPD characteristics. Semi-synthetic glycosaminoglycan ethers (SAGEs) are sulfated polysaccharides derived from hyaluronic acid that inhibit RAGE signaling. The growth arrest-specific 6 (Gas6) protein is known to induce dynamic cellular responses and is correlated with cell function. Gas6 binds to the AXL tyrosine kinase receptor and AXL-mediated signaling is implicated in proliferation and inflammation. This project's purpose was to study the correlation between RAGE, AXL, and Gas6 during SHS exposure in the lung. Methods: C57Bl/6 mice were exposed to SHS alone or SHS + SAGEs for 4 weeks and compared to control animals exposed to room air (RA). Results: Compared to controls we observed: 1) increased RAGE mRNA and protein expression in SHS-exposed lungs which was decreased by SAGEs; 2) decreased expression of total AXL, but highly elevated pAXL expression following exposure; 3) highly elevated Gas6 expression when RAGE was targeted by SAGEs during SHS exposure; 4) SHS-mediated BALF cellularity and inflammatory molecule elaboration; and 5) the induction of both RAGE and AXL by Gas6 in cell culture models. Conclusions: Our results suggest that there is a possible correlation between RAGE and AXL during SHS exposure. Additional research is critically needed that dissects the molecular interplay between these two important signaling cascades. At this point, the current studies provide insight into tobacco-mediated effects in the lung and clarify possible avenues for alleviating complications that could arise during SHS exposure such as those observed during COPD exacerbations.
Collapse
Affiliation(s)
- Kary Y F Tsai
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Kelsey M Hirschi Budge
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Sam Llavina
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Taylor Davis
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Matt Long
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Abby Bennett
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Beau Sitton
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Juan A Arroyo
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Paul R Reynolds
- Lung and Placenta Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
18
|
Hildebrand D, Decker SO, Koch C, Schmitt FCF, Ruhrmann S, Schneck E, Sander M, Weigand MA, Brenner T, Heeg K, Uhle F. Host-Derived Delta-Like Canonical Notch Ligand 1 as a Novel Diagnostic Biomarker for Bacterial Sepsis-Results From a Combinational Secondary Analysis. Front Cell Infect Microbiol 2019; 9:267. [PMID: 31396491 PMCID: PMC6663974 DOI: 10.3389/fcimb.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Sepsis is a life-threatening syndrome, resulting from a dysbalanced host response to infection. However, especially the early, pro-inflammatory immune response in sepsis is similar to other inflammatory conditions without infectious cause, e.g., trauma or surgery. This aspect challenges the value of current biomarkers for diagnosis, as these are often broadly induced. We earlier identified Delta-like Protein 1 (DLL1), a canonical Notch ligand, to be released from monocytes upon bacterial stimulation. Considering the importance of monocytes in the pathophysiology of sepsis, we hypothesized that this mechanism might occur also in the clinical setting and DLL1 might serve as a biomarker of life-threatening bacterial infection. Methods: We combined samples from three different studies, including subgroups of patients with sepsis (n = 80), surgical patients (n = 50), trauma patients (n = 36), as well as healthy controls (n = 50). We assessed plasma concentrations of DLL1 using ELISA. We performed Area-under-receiver-operator-curve (AUROC) analysis to evaluate the diagnostic performance of DLL1 compared to leucocytes, C-reactive protein (CRP), and procalcitonin (PCT). Results: Plasma concentrations of DLL1 were strongly elevated already at sepsis onset and maintained elevated until day 7. In contrast, neither surgical patients nor patients after severe trauma presented with elevated levels, while conventional biomarkers of inflammation (e.g., leucocytes and CRP), responded. AUROC analysis revealed a cut-off of 30 ng/ml associated with the best diagnostic performance, yielding a superior accuracy of 91% for DLL1, compared to 75, 79, and 81% for CRP, leucocytes, and PCT. Conclusion: DLL1 is a novel host-derived biomarker for the diagnosis of sepsis with a better performance compared to established ones, most likely due to its high robustness in non-infectious inflammatory responses. Clinical Trial Registration:POCSEP-Trial DRKS00008090; MIRSI DRKS00005463; SPRINT DRKS00010991.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian O Decker
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Felix C F Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sophie Ruhrmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Emmanuel Schneck
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Giessen, Germany
| | | | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Doni A, Stravalaci M, Inforzato A, Magrini E, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front Immunol 2019; 10:712. [PMID: 31019517 PMCID: PMC6459138 DOI: 10.3389/fimmu.2019.00712] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules.
Collapse
Affiliation(s)
- Andrea Doni
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Matteo Stravalaci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Magrini
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Humanitas Clinical and Research Institute-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | |
Collapse
|
20
|
Zeneyedpour L, Dekker LJM, van Sten‐van`t Hoff JJM, Burgers PC, ten Hacken NHT, Luider TM. Neoantigens in Chronic Obstructive Pulmonary Disease and Lung Cancer: A Point of View. Proteomics Clin Appl 2019; 13:e1800093. [PMID: 30706659 PMCID: PMC6593722 DOI: 10.1002/prca.201800093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The goal of this manuscript is to explore the role of clinical proteomics for detecting mutations in chronic obstructive pulmonary disease (COPD) and lung cancer by mass spectrometry-based technology. COPD and lung cancer caused by smoke inhalation are most likely linked by challenging the immune system via partly shared pathways. Genome-wide association studies have identified several single nucleotide polymorphisms which predispose an increased susceptibility to COPD and lung cancer. In lung cancer, this leads to coding mutations in the affected tissues, development of neoantigens, and different functionality and abundance of proteins in specific pathways. If a similar reasoning can also be applied in COPD will be discussed. The technology of mass spectrometry has developed into an advanced technology for proteome research detecting mutated peptides or proteins and finding relevant molecular mechanisms that will enable predicting the response to immunotherapy in COPD and lung cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Nick H. T. ten Hacken
- Department of PulmonologyUniversity Medical Center Groningen/University of Groningen9713 GroningenNetherlands
| | - Theo M. Luider
- Department of NeurologyErasmus MCRotterdam3015 GENetherlands
| |
Collapse
|
21
|
Yu Q, Yang D, Chen X, Chen Q. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med 2019; 19:29. [PMID: 30727993 PMCID: PMC6364420 DOI: 10.1186/s12890-019-0791-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD147 is expressed in many tissues and is involved in many inflammatory diseases. Emerging evidence suggests that the overproduction of mucus is a malignant factor in chronic obstructive pulmonary disease (COPD), which results in severe airway obstruction and repeated airway infections. However, it is still unclear whether CD147 is involved in mucus production in COPD. METHODS We determined the expression levels of CD147 and MUC5AC by immunohistochemistry in 42 human lung specimens from three groups (non-smokers without COPD, smokers without COPD and smokers with COPD). For the in vitro experiment, human bronchial epithelial (HBE) cells were treated with cigarette smoke (CS) extract to establish a mucus secretion model; then, CD147 and MUC5AC production were detected by RT-PCR, Western blotting and ELISA. To determine how CD147 is involved in MUC5AC secretion, HBE cells were transfected with small interfering RNA to silence CD147 and pretreated with inhibitors of MMP9 and p38 MAPK, which are common signaling molecules involved in MUC5AC secretion; then, MUC5AC expression was evaluated. RESULTS Compared with the expression levels in the non-smokers and smokers without COPD, CD147 and MUC5AC expression levels were higher in the smokers with COPD. In the in vitro experiment, CD147 and MUC5AC expression levels were significantly increased after CS extract incubation compared with those after no treatment. Silencing CD147 by siRNA decreased the CS extract-induced MUC5AC secretion and MMP9 and phosphorylated p38 MAPK production. In addition, inhibiting MMP9 or p38 MAPK decreased the CS extract-induced MUC5AC secretion. CONCLUSIONS In lung specimens, CD147 and MUC5AC expression levels were increased in COPD patients. Increased CD147 levels induced by CS extract could stimulate MUC5AC secretion through the MMP9 and p38 MAPK signaling pathway in HBE cells. Therefore, the regulation of CD147 could be a promising target for mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya of Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
Tumor Extracellular Matrix Remodeling: New Perspectives as a Circulating Tool in the Diagnosis and Prognosis of Solid Tumors. Cells 2019; 8:cells8020081. [PMID: 30678058 PMCID: PMC6406979 DOI: 10.3390/cells8020081] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
In recent years, it has become increasingly evident that cancer cells and the local microenvironment are crucial in the development and progression of tumors. One of the major components of the tumor microenvironment is the extracellular matrix (ECM), which comprises a complex mixture of components, including proteins, glycoproteins, proteoglycans, and polysaccharides. In addition to providing structural and biochemical support to tumor tissue, the ECM undergoes remodeling that alters the biochemical and mechanical properties of the tumor microenvironment and contributes to tumor progression and resistance to therapy. A novel concept has emerged, in which tumor-driven ECM remodeling affects the release of ECM components into peripheral blood, the levels of which are potential diagnostic or prognostic markers for tumors. This review discusses the most recent evidence on ECM remodeling-derived signals that are detectable in the bloodstream, as new early diagnostic and risk prediction tools for the most frequent solid cancers.
Collapse
|