1
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
2
|
Shalata W, Attal ZG, Solomon A, Shalata S, Abu Saleh O, Tourkey L, Abu Salamah F, Alatawneh I, Yakobson A. Melanoma Management: Exploring Staging, Prognosis, and Treatment Innovations. Int J Mol Sci 2024; 25:5794. [PMID: 38891988 PMCID: PMC11171767 DOI: 10.3390/ijms25115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma, a malignant neoplasm originating from melanocytes, stands as one of the most prevalent cancers globally, ranking fifth in terms of estimated new cases in recent years. Its aggressive nature and propensity for metastasis pose significant challenges in oncology. Recent advancements have led to a notable shift towards targeted therapies, driven by a deeper understanding of cutaneous tumor pathogenesis. Immunotherapy and tyrosine kinase inhibitors have emerged as promising strategies, demonstrating the potential to improve clinical outcomes across all disease stages, including neoadjuvant, adjuvant, and metastatic settings. Notably, there has been a groundbreaking development in the treatment of brain metastasis, historically associated with poor prognosis in oncology but showcasing impressive results in melanoma patients. This review article provides a comprehensive synthesis of the most recent knowledge on staging and prognostic factors while highlighting emerging therapeutic modalities, with a particular focus on neoadjuvant and adjuvant strategies, notably immunotherapy and targeted therapies, including the ongoing trials.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zoe Gabrielle Attal
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Adam Solomon
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Fahed Abu Salamah
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Ibrahim Alatawneh
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
3
|
Naffa R, Hegedűs L, Hegedűs T, Tóth S, Papp B, Tordai A, Enyedi Á. Plasma membrane Ca 2+ pump isoform 4 function in cell migration and cancer metastasis. J Physiol 2024; 602:1551-1564. [PMID: 36876504 DOI: 10.1113/jp284179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
The Ca2+ ion is a universal second messenger involved in many vital physiological functions including cell migration and development. To fulfil these tasks the cytosolic Ca2+ concentration is tightly controlled, and this involves an intricate functional balance between a variety of channels and pumps of the Ca2+ signalling machinery. Among these proteins, plasma membrane Ca2+ ATPases (PMCAs) represent the major high-affinity Ca2+ extrusion systems in the cell membrane that are effective in maintaining free Ca2+ concentration at exceedingly low cytosolic levels, which is essential for normal cell function. An imbalance in Ca2+ signalling can have pathogenic consequences including cancer and metastasis. Recent studies have highlighted the role of PMCAs in cancer progression and have shown that a particular variant, PMCA4b, is downregulated in certain cancer types, causing delayed attenuation of the Ca2+ signal. It has also been shown that loss of PMCA4b leads to increased migration and metastasis of melanoma and gastric cancer cells. In contrast, an increased PMCA4 expression has been reported in pancreatic ductal adenocarcinoma that coincided with increased cell migration and shorter patient survival, suggesting distinct roles of PMCA4b in various tumour types and/or different stages of tumour development. The recently discovered interaction of PMCAs with basigin, an extracellular matrix metalloproteinase inducer, may provide further insights into our understanding of the specific roles of PMCA4b in tumour progression and cancer metastasis.
Collapse
Affiliation(s)
- Randa Naffa
- Molecular Biology Research Laboratory, School of Medicine, The University of Jordan, Amman, Jordan
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Sarolta Tóth
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Enyedi
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Bychkova S, Bychkov M, Dordevic D, Vítězová M, Rittmann SKMR, Kushkevych I. Bafilomycin A1 Molecular Effect on ATPase Activity of Subcellular Fraction of Human Colorectal Cancer and Rat Liver. Int J Mol Sci 2024; 25:1657. [PMID: 38338935 PMCID: PMC10855383 DOI: 10.3390/ijms25031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.
Collapse
Affiliation(s)
- Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Mykola Bychkov
- Department of Therapy No. 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| |
Collapse
|
5
|
Martin-García D, Téllez T, Redondo M, García-Aranda M. Calcium Homeostasis in the Development of Resistant Breast Tumors. Cancers (Basel) 2023; 15:2872. [PMID: 37296835 PMCID: PMC10251880 DOI: 10.3390/cancers15112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main health problems worldwide. Only in 2020, this disease caused more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diagnosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage of patients will either not respond to therapy or will eventually experience lethal progressive disease. Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and prognostic biomarker, as well as its potential for the development of new pharmacological treatments to treat the disease.
Collapse
Affiliation(s)
- Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| |
Collapse
|
6
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
Fundamental Role of Pentose Phosphate Pathway within the Endoplasmic Reticulum in Glutamine Addiction of Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010043. [PMID: 36670904 PMCID: PMC9854646 DOI: 10.3390/antiox12010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.
Collapse
|
8
|
Xu Q, Zhou L, Ri H, Li X, Zhang X, Qi W, Ye L. Role of estrogen receptors in thyroid toxicity induced by mono (2-ethylhexyl) phthalate via endoplasmic reticulum stress: An in vitro mechanistic investigation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104007. [PMID: 36341965 DOI: 10.1016/j.etap.2022.104007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) can influence the expression of estrogen receptors (ERs) and induce thyroid injury. The expression of ERs can be related to thyroid disease and abnormal expression of ERs has been associated with activation of endoplasmic reticulum stress. This study aimed to clarify the role of ERs in MEHP-induced thyroid damage via endoplasmic reticulum stress. We exposed Nthy-ori 3-1 cells to different doses of MEHP. We found that after the exposure, the cell viability and the expression levels of thyroid hormone metabolism-related proteins decreased, while the apoptosis level and the expression levels of ERs (ERα and GPR30) increased. Three endoplasmic reticulum stress-related signaling pathways were activated by MEHP. After ERα and GPR30 were knocked down, these three pathways were inhibited and the thyroid toxicity was alleviated. Taken together, our results indicate that MEHP can induce thyroid toxicity by upregulating the expression of ERs, further activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; Faculty of Public Health, Pyongyang Medical University, Pyongyang, Democratic People's Republic of Korea
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Novel Biomarkers and Therapeutic Targets for Melanoma. Int J Mol Sci 2022; 23:ijms231911656. [PMID: 36232957 PMCID: PMC9570448 DOI: 10.3390/ijms231911656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Malignant melanoma is one of the most common cancers in the world. In the disease’s early stages, treatment involves surgery, in advanced stages however, treatment options were once scarce. There has been a paradigm shift in advanced melanoma treatment with the introduction of immunotherapy and targeted therapies. Understanding the molecular pathways and their pathologic counterparts helped identifying specific biomarkers that lead to the development of specific targeted therapies. In this review we briefly present some of these markers and their relevance to melanoma treatment.
Collapse
|
10
|
Hernández-Oliveras A, Zarain-Herzberg Á. Expression and associated epigenetic mechanisms of the Ca 2+-signaling genes in breast cancer subtypes and epithelial-to-mesenchymal transition. J Cell Commun Signal 2022; 16:461-474. [PMID: 34762262 PMCID: PMC9411462 DOI: 10.1007/s12079-021-00655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Breast cancer-associated deaths are related mainly to specific molecular subtypes and the presence of metastasis. The Epithelial-to-Mesenchymal Transition (EMT) and Ca2+ signaling pathways are involved in breast cancer metastasis, and they are regulated in part by epigenetic mechanisms. Moreover, activation of EMT modulates Ca2+ concentration and in turn, Ca2+ signaling regulates the expression of EMT markers. Also, activation of Ca2+ signaling genes with epigenetic inhibitors reverts the EMT. Thus, Ca2+ signaling might have an important role in breast cancer metastasis and EMT, particularly through the epigenetic regulation of genes involved in its signaling. However, little is known due to that an estimate of 1670 genes participate in the Ca2+ signaling and only a few genes have been studied. Here, we aimed to explore the expression of all genes involved in Ca2+ signaling in all breast cancer subtypes and EMT, and whether modulation of epigenetic mechanisms is related to their expression. Several genes of the Ca2+ signaling are altered in all breast cancer subtypes, being the cadherins and voltage channels the most frequent altered genes. Also, DNA methylation and histone posttranslational modifications showed a good correlation with their altered expression. The expression of the cadherins and voltage channels is also modulated during breast EMT, and ATAC-seq results suggest that chromatin rearrangement at their promoter is involved. In conclusion, the expression of the genes involved in Ca2+ signaling is altered in all breast cancer subtypes and during EMT, and epigenetic mechanisms are an attractive target to regulate their expression.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
11
|
Experimentally Deduced Criteria for Detection of Clinically Relevant Fusion 3′ Oncogenes from FFPE Bulk RNA Sequencing Data. Biomedicines 2022; 10:biomedicines10081866. [PMID: 36009413 PMCID: PMC9405289 DOI: 10.3390/biomedicines10081866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins demonstrate impressive anti-cancer activities. The fusion presence in the cancer is the respective drug prescription biomarker, but their identification is challenging as both the breakpoint and the exact fusion partners are unknown. RNAseq offers the advantage of finding both fusion parts by screening sequencing reads. Paraffin (FFPE) tissue blocks are the most common way of storing cancer biomaterials in biobanks. However, finding RTK fusions in FFPE samples is challenging as RNA fragments are short and their artifact ligation may appear in sequencing libraries. Here, we annotated RNAseq reads of 764 experimental FFPE solid cancer samples, 96 leukemia samples, and 2 cell lines, and identified 36 putative clinically relevant RTK fusions with junctions corresponding to exon borders of the fusion partners. Where possible, putative fusions were validated by RT-PCR (confirmed for 10/25 fusions tested). For the confirmed 3′RTK fusions, we observed the following distinguishing features. Both moieties were in-frame, and the tyrosine kinase domain was preserved. RTK exon coverage by RNAseq reads upstream of the junction site were lower than downstream. Finally, most of the true fusions were present by more than one RNAseq read. This provides the basis for automatic annotation of 3′RTK fusions using FFPE RNAseq profiles.
Collapse
|
12
|
Hegedüs L, Livingstone E, Bánkfalvi Á, Viehof J, Enyedi Á, Bilecz Á, Győrffy B, Baranyi M, Tőkés AM, Gil J, Marko-Varga G, Griewank KG, Zimmer L, Váraljai R, Sucker A, Zaremba A, Schadendorf D, Aigner C, Hegedüs B. The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition. Int J Mol Sci 2022; 23:3324. [PMID: 35328746 PMCID: PMC8949876 DOI: 10.3390/ijms23063324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Elisabeth Livingstone
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Ágnes Bánkfalvi
- Department of Pathology, University Medicine Essen, 45147 Essen, Germany;
| | - Jan Viehof
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Ágnes Enyedi
- Department of Transfusiology, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Bilecz
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary;
| | - Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
| | - Klaus G. Griewank
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Lisa Zimmer
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Renáta Váraljai
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Antje Sucker
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Anne Zaremba
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Dirk Schadendorf
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Balázs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| |
Collapse
|
13
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Kushkevych I, Bychkov M, Bychkova S, Gajdács M, Merza R, Vítězová M. ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate. Biomedicines 2021; 9:biomedicines9121805. [PMID: 34944620 PMCID: PMC8698369 DOI: 10.3390/biomedicines9121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the “acid store” of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients’ and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients’ colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer −8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive “acidic store” (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the “acidic store” (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| | - Mykola Bychkov
- Department of Therapy No 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary;
- Faculty of Medicine, Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Romana Merza
- Department of Anesthesiology and Intensive Care, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| |
Collapse
|
15
|
Altered SERCA Expression in Breast Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57101074. [PMID: 34684111 PMCID: PMC8539028 DOI: 10.3390/medicina57101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Background and Objectives: Calcium (Ca2+) signaling is critical for the normal functioning of various cellular activities. However, abnormal changes in cellular Ca2+ can contribute to pathological conditions, including various types of cancer. The maintenance of intracellular Ca2+ levels is achieved through tightly regulated processes that help maintain Ca2+ homeostasis. Several types of regulatory proteins are involved in controlling intracellular Ca2+ levels, including the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA), which maintains Ca2+ levels released from the SR/ER. In total, three ATPase SR/ER Ca2+-transporting (ATP2A) 1-3 genes exist, which encode for several isoforms whose expression profiles are tissue-specific. Recently, it has become clear that abnormal SERCA expression and activity are associated with various types of cancer, including breast cancer. Breast carcinomas represent 40% of all cancer types that affect women, with a wide variety of pathological and clinical conditions. Materials and methods: Using cBioPortal breast cancer patient data, Kaplan–Meier plots demonstrated that high ATP2A1 and ATP2A3 expression was associated with reduced patient survival. Results: The present study found significantly different SERCA specific-type expressions in a series of breast cancer cell lines. Moreover, bioinformatics analysis indicated that ATP2A1 and ATP2A3 expression was highly altered in patients with breast cancer. Conclusion: Overall, the present data suggest that SERCA gene-specific expressioncan possibly be considered as a crucial target for the control of breast cancer development and progression.
Collapse
|
16
|
Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal 2021; 19:99. [PMID: 34579758 PMCID: PMC8477534 DOI: 10.1186/s12964-021-00781-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a common malignant tumor of plasma cells. Despite several treatment approaches in the past two decades, MM remains an aggressive and incurable disease in dire need of new treatment strategies. Approximately 70–80% of patients with MM have myeloma bone disease (MBD), often accompanied by pathological fractures and hypercalcemia, which seriously affect the prognosis of the patients. Calcium channels and transporters can mediate Ca2+ balance inside and outside of the membrane, indicating that they may be closely related to the prognosis of MM. Therefore, this review focuses on the roles of some critical calcium channels and transporters in MM prognosis, which located in the plasma membrane, endoplasmic reticulum and mitochondria. The goal of this review is to facilitate the identification of new targets for the treatment and prognosis of MM.![]() Video Abstract
Collapse
Affiliation(s)
- Tingting Li
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China.,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
17
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
18
|
Liu C, Han Y, Tong P, Kuang D, Li N, Lu C, Sun X, Wang W, Dai J. Genome-wide DNA methylome and whole-transcriptome landscapes of spontaneous intraductal papilloma in tree shrews. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:688. [PMID: 33987386 PMCID: PMC8106051 DOI: 10.21037/atm-21-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Breast intraductal papilloma (IP) is mainly caused by the abnormal proliferation of ductal epithelial cells. Tree shrews have potential as an animal model for the study of breast tumours; however, little is known regarding the transcriptome and DNA methylome landscapes of breast IP in tree shrews. In this research, we conducted whole-genome DNA methylation and transcriptome analyses of breast IP and normal mammary glands in tree shrews. Methods DNA methylation profiles were generated from the whole-genome bisulfite sequencing and whole-transcriptome landscapes of IP and control groups of tree shrews through strand-specific library construction and RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses and gene set enrichment analysis were performed. Spearman’s correlation analysis was used to identify statistical relationships between gene expression and DNA methylation. Results A genome-wide perspective of the epigenetic regulation of protein-coding genes in breast IP in tree shrews was obtained. The methylation levels at CG sites were considerably higher than those at CHG or CHH sites, and were highest in gene body regions. In total, 3,486, 82 and 361 differentially methylated regions (DMRs) were identified in the context of CG, CHG, and CHH, respectively, and 701 differentially methylated genes (DMGs) were found. Further, through transcriptomic analysis, 62 differentially expressed genes, 50 long noncoding RNAs, and 32 circular RNAs were identified in breast IP compared to normal mammary glands. Correlation analysis between the DNA methylation and transcriptome data revealed that 25 DMGs were also differentially expressed genes, among which the expression levels of 9 genes were negatively correlated with methylation levels in gene body regions. Importantly, integrated analysis identified 3 genes (PDZ domain-containing 1, ATPase plasma membrane Ca2+ transporting 4 and Lymphocyte cytosolic protein 1) that could serve as candidates for further study of breast IP in tree shrews. Conclusions This research has unearthed the comprehensive landscape of the transcriptome and DNA methylome of spontaneous IP in tree shrews, as well as candidate tumorigenesis related genes in IP. These results will contribute to the use of tree shrews in animal models of breast tumours.
Collapse
Affiliation(s)
- Chengxiu Liu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Dexuan Kuang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Naffa R, Padányi R, Ignácz A, Hegyi Z, Jezsó B, Tóth S, Varga K, Homolya L, Hegedűs L, Schlett K, Enyedi A. The Plasma Membrane Ca 2+ Pump PMCA4b Regulates Melanoma Cell Migration through Remodeling of the Actin Cytoskeleton. Cancers (Basel) 2021; 13:cancers13061354. [PMID: 33802790 PMCID: PMC8002435 DOI: 10.3390/cancers13061354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Earlier we demonstrated that the plasma membrane Ca2+ pump PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells, however, the exact mechanism has not been fully understood. Here we demonstrate that PMCA4b acted through actin cytoskeleton remodeling in generating a low migratory melanoma cell phenotype resulting in increased cell–cell connections, lamellipodia and stress fiber formation. Both proper trafficking and calcium transporting activity of the pump were essential to complete these tasks indicating that controlling Ca2+ concentration levels at specific plasma membrane locations such as the cell front played a role. Our findings suggest that PMCA4b downregulation is likely one of the mechanisms that leads to the perturbed cancer cell cytoskeleton organization resulting in enhanced melanoma cell migration and metastasis. Abstract We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell–cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.
Collapse
Affiliation(s)
- Randa Naffa
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Bálint Jezsó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Sarolta Tóth
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, 45239 Essen, Germany;
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Agnes Enyedi
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Correspondence:
| |
Collapse
|
20
|
Epigenetic Modulation of SPCA2 Reverses Epithelial to Mesenchymal Transition in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13020259. [PMID: 33445642 PMCID: PMC7827456 DOI: 10.3390/cancers13020259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The triple receptor negative breast cancer subtype, or TNBC, currently has no tailored treatment options. TNBC is highly metastatic, associated with high patient mortality, and disproportionately occurs in Black/African American women where it contributes to racial disparities in health outcomes. Therefore, we focused on new therapeutic approaches to TNBC. We discovered that levels of the Calcium-ATPase SPCA2 are abnormally low in TNBC and that these low levels correlate with poor survival prognosis in patients. Previously, we showed that recombinant SPCA2 prevented TNBC cells from acquiring aggressive “mesenchymal” properties associated with metastasis both in vitro and in vivo. These findings motivated us to search for drugs that turn the SPCA2 gene back on in TNBC cells. In this study, we show that histone deacetylase inhibitors increase SPCA2 levels, activate Ca2+ signaling and convert cancer cells to a less aggressive “epithelial” state. These findings could lead to new treatment options for TNBC. Abstract The secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and β-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.
Collapse
|
21
|
Yang T, Wang P, Yin X, Zhang J, Huo M, Gao J, Li G, Teng X, Yu H, Huang W, Wang Y. The histone deacetylase inhibitor PCI-24781 impairs calcium influx and inhibits proliferation and metastasis in breast cancer. Am J Cancer Res 2021; 11:2058-2076. [PMID: 33500709 PMCID: PMC7797697 DOI: 10.7150/thno.48314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in key cellular processes and have been implicated in cancer. As such, compounds that target HDACs or drugs that target epigenetic markers may be potential candidates for cancer therapy. This study was therefore aimed to identify a potential epidrug with low toxicity and high efficiency as anti-tumor agents. Methods: We first screened an epigenetic small molecule inhibitor library to screen for an epidrug for breast cancer. The candidate was identified as PCI-24781 and was characterized for half maximal inhibitory concentration (IC50), for specificity to breast cancer cells, and for effects on carcinogenesis and metastatic properties of breast cancer cell lines in vitro. A series of in silico and in vitro analyses were further performed of PCI-24781 to identify and understand its target. Results: Screening of an epigenetic inhibitor library in MDA-MB-231 cells, a malignant cancer cell line, showed that PCI-24781 is a potential anti-tumor drug specific to breast cancer. Ca2+ related pathways were identified as a potential target of PCI-24781. Further analyses showed that PCI-24781 inhibited Gαq-PLCβ3-mediated calcium signaling by activating the expression of regulator of G-protein signaling 2 (RGS2) to reduce cell proliferation, metastasis, and differentiation, resulting in cell death in breast cancer. In addition, RGS2 depletion reversed anti-tumor effect and inhibition of calcium influx induced by PCI-24781 treatment in breast cancer cells. Conclusions: We have demonstrated that PCI-24781 is an effective anti-tumor therapeutic agent that targets calcium signaling by activating RGS2. This study also provides a novel perspective into the use of HDAC inhibitors for cancer therapy.
Collapse
|
22
|
Liu Y, Liu Y, Hu J, He Z, Liu L, Ma Y, Wen D. Heterogeneous miRNA-mRNA Regulatory Networks of Visceral and Subcutaneous Adipose Tissue in the Relationship Between Obesity and Renal Clear Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:713357. [PMID: 34621242 PMCID: PMC8490801 DOI: 10.3389/fendo.2021.713357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urologic cancer. Associations of both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with ccRCC have been reported, and underlying mechanisms of VAT perhaps distinguished from SAT, considering their different structures and functions. We performed this study to disclose different miRNA-mRNA networks of obesity-related ccRCC in VAT and SAT using datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA); and find out different RNAs correlated with the prognosis of ccRCC in VAT and SAT. METHODS We screened out different expressed (DE) mRNAs and miRNAs of obesity, in both VAT and SAT from GEO datasets, and constructed miRNA-mRNA networks of obesity-related ccRCC. To evaluate the sensitivity and specificity of RNAs in networks of obesity-related ccRCC in both VAT and SAT, Receiver Operating Characteristic (ROC) analyses were conducted using TCGA datasets. Spearman correlation analyses were then performed to find out RNA pairs with inverse correlations. We also performed Cox regression analyses to estimate the association of all DE RNAs of obesity with the overall survival. RESULTS 136 and 185 DE mRNAs of obesity in VAT and SAT were found out. Combined with selected DE miRNAs, miRNA-mRNA networks of obesity-related ccRCC were constructed. By performing ROC analyses, RNAs with same trend as shown in networks and statistically significant ORs were selected to be paired. Three pairs were finally remained in Spearman correlation analyses, including hsa-miR-182&ATP2B2, hsa-miR-532&CDH2 in VAT, and hsa-miR-425&TFAP2B in SAT. Multivariable Cox regression analyses showed that several RNAs with statistically significant adjusted HRs remained consistent trends as shown in DE analyses of obesity. Risk score analyses using selected RNAs showed that the overall survival time of patients in the low-risk group was significantly longer than that in the high-risk group regardless of risk score models. CONCLUSIONS We found out different miRNA-mRNA regulatory networks of obesity-related ccRCC for both VAT and SAT; and several DE RNAs of obesity-related ccRCC were found to remain consistent performance in terms of ccRCC prognosis. Our findings could provide valuable evidence on the targeted therapy of obesity-related ccRCC.
Collapse
Affiliation(s)
- Yuyan Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Zhenwei He
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
23
|
Sharma V, Rana R, Baksi R, Borse SP, Nivsarkar M. Light-controlled calcium signalling in prostate cancer and benign prostatic hyperplasia. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Identifying ways to reduce the burden of prostate cancer (Pca) or benign prostatic hyperplasia (BPH) is a top research priority. It is a typical entanglement seen in men which is portrayed by trouble in micturition. It stands as a significant problem in our society. Different molecular biomarker has high potential to treat Pca or BPH but also causes serious side effects during treatment.
Main text
The role of calcium signalling in the alteration of different biomarkers of Pca or BPH is important. Therefore, the photoswitch drugs may hold the potential to rebalance the altered calcium signaling cascade and the biomarker levels. Thereby play a significant role in the management of Pca and BPH. Online literature searches such as PubMed, Web of Science, Scopus, and Google Scholar were carried out. The search terms used for this review were photo-pharmacology, photo-switch drug, photodynamic therapy, calcium signalling, etc. Present treatment of Pca or BPH shows absence of selectivity and explicitness which may additionally result in side effects. The new condition of the calcium flagging may offer promising outcomes in restoring the present issues related with prostate malignancy and BPH treatment.
Conclusion
The light-switching calcium channel blockers aim to solve this issue by incorporating photo-switchable calcium channel blockers that may control the signalling pathway related to proliferation and metastasis in prostate cancer without any side effects.
Graphical abstract
Schematic diagram explaining the proposed role of photo-switch therapy in curbing the side effects of active drugs in Pca (prostate cancer) and BPH (benign prostatic hyperplasia). a) Delivery of medication by ordinary strategies and irreversible phototherapy causes side effects during treatment. Utilization of photo-switch drug to control the dynamic and inert condition of the medication can cause the medication impacts as we required in prostate cancer and BPH. b) Support of harmony between the calcium signaling is essential to guarantee ordinary physiology. Increment or abatement in the dimensions of calcium signaling can result in changed physiology. c) Major factors involved in the pathogenesis of BPH; downregulation of vitamin D receptor (VDR) and histone deacetylase (HDAC) can prevent BPH. Similarly, downregulation of α-1 adrenoceptor can reduce muscle contraction, while overexpression of β-3 adrenoceptor in BPH can promote further muscle relaxation in BPH treatment therapy. Inhibition of overexpressed biomarkers in BPH TRPM2-1: transient receptor potential cation channel subfamily M member 1; TRPM2-2: transient receptor potential cation channel subfamily M member 2; Androgens; CXCL5: C-X-C motif chemokine ligand 5; TGFβ-1: transforming growth factor β-1; TXA2; thromboxane-2; NMDA: N-methyl-d-aspartate can be the potential target in BPH therapy.
Collapse
|
24
|
Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21:ijms21218323. [PMID: 33171939 PMCID: PMC7664196 DOI: 10.3390/ijms21218323] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is a major second messenger in cells and is essential for the fate and survival of all higher organisms. Different Ca2+ channels, pumps, or exchangers regulate variations in the duration and levels of intracellular Ca2+, which may be transient or sustained. These changes are then decoded by an elaborate toolkit of Ca2+-sensors, which translate Ca2+ signal to intracellular operational cell machinery, thereby regulating numerous Ca2+-dependent physiological processes. Alterations to Ca2+ homoeostasis and signaling are often deleterious and are associated with certain pathological states, including cancer. Altered Ca2+ transmission has been implicated in a variety of processes fundamental for the uncontrolled proliferation and invasiveness of tumor cells and other processes important for cancer progression, such as the development of resistance to cancer therapies. Here, we review what is known about Ca2+ signaling and how this fundamental second messenger regulates life and death decisions in the context of cancer, with particular attention directed to cell proliferation, apoptosis, and autophagy. We also explore the intersections of Ca2+ and the therapeutic targeting of cancer cells, summarizing the therapeutic opportunities for Ca2+ signal modulators to improve the effectiveness of current anticancer therapies.
Collapse
|
25
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
26
|
Pederson PJ, Cai S, Carver C, Powell DR, Risinger AL, Grkovic T, O'Keefe BR, Mooberry SL, Cichewicz RH. Triple-Negative Breast Cancer Cells Exhibit Differential Sensitivity to Cardenolides from Calotropis gigantea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2269-2280. [PMID: 32649211 PMCID: PMC7540184 DOI: 10.1021/acs.jnatprod.0c00423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triple-negative breast cancers (TNBC) are aggressive and heterogeneous cancers that lack targeted therapies. We implemented a screening program to identify new leads for subgroups of TNBC using diverse cell lines with different molecular drivers. Through this program, we identified an extract from Calotropis gigantea that caused selective cytotoxicity in BT-549 cells as compared to four other TNBC cell lines. Bioassay-guided fractionation of the BT-549 selective extract yielded nine cardenolides responsible for the selective activity. These included eight known cardenolides and a new cardenolide glycoside. Structure-activity relationships among the cardenolides demonstrated a correlation between their relative potencies toward BT-549 cells and Na+/K+ ATPase inhibition. Calotropin, the compound with the highest degree of selectivity for BT-549 cells, increased intracellular Ca2+ in sensitive cells to a greater extent than in the resistant MDA-MB-231 cells. Further studies identified a second TNBC cell line, Hs578T, that is also highly sensitive to the cardenolides, and mechanistic studies were conducted to identify commonalities among the sensitive cell lines. Experiments showed that both cardenolide-sensitive cell lines expressed higher mRNA levels of the Na+/Ca2+ exchanger NCX1 than resistant TNBC cells. This suggests that NCX1 could be a biomarker to identify TNBC patients that might benefit from the clinical administration of a cardiac glycoside for anticancer indications.
Collapse
Affiliation(s)
- Petra J Pederson
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chase Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Douglas R Powell
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
27
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
28
|
P38 MAPK Promotes Migration and Metastatic Activity of BRAF Mutant Melanoma Cells by Inducing Degradation of PMCA4b. Cells 2020; 9:cells9051209. [PMID: 32414111 PMCID: PMC7290426 DOI: 10.3390/cells9051209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastatic melanoma is the most aggressive type of skin cancer. Previously, we identified the plasma membrane Ca2+ pump isoform 4b (PMCA4b or ATP2B4) as a putative metastasis suppressor in BRAF mutant melanoma cells. Metastasis suppressors are often downregulated in cancer, therefore, it is important to identify the pathways involved in their degradation. Here, we studied the role of p38 MAPK in PMCA4b degradation and its effect on melanoma metastasis. We found that activation of p38 MAPK induces internalization and subsequent degradation of PMCA4b through the endo/lysosomal system that contributes to the low PMCA4b steady-state protein level of BRAF mutant melanoma cells. Moreover, BRAF wild type cell models including a doxycycline-inducible HEK cell system revealed that p38 MAPK is a universal modulator of PMCA4b endocytosis. Inhibition of the p38 MAPK pathway markedly reduced migration, colony formation and metastatic activity of BRAF mutant cells in vitro partially through an increase in PMCA4b and a decrease in β4 integrin abundance. In conclusion, our data suggest that the p38 MAPK pathway plays a key role in PMCA4b degradation and inhibition of this pathway—by increasing the stability of PMCA4b—may provide a potential therapeutic target for inhibition of melanoma progression and metastasis.
Collapse
|
29
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
30
|
O'Grady S, Morgan MP. Calcium transport and signalling in breast cancer: Functional and prognostic significance. Semin Cancer Biol 2019; 72:19-26. [PMID: 31866475 DOI: 10.1016/j.semcancer.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Comprised of a complex network of numerous intertwining pathways, the Ca2+ signalling nexus is an essential mediator of many normal cellular activities. Like many other such functions, the normal physiological activity of Ca2+ signalling is frequently co-opted and reshaped in cases of breast cancer, creating a potent oncogenic drive within the affected cell population. Such modifications can occur within pathways mediating either Ca2+ import (e.g. TRP channels, ORAI-STIM1) or Ca2+ export (e.g. PMCA), indicating that both increases and decreases within cellular Ca2+ levels have the potential to increase the malignant potential of a cell. Increased understanding of these pathways may offer clinical benefit in terms of both prognosis and treatment; patient survival has been linked to expression levels of certain Ca2+ transport proteins, whilst selective targeting of these factors with novel anti-cancer agents has demonstrated a variety of anti-tumour effects in in vitro studies. In addition, the activity of several Ca2+ signalling pathways has been shown to influence chemotherapy response, suggesting that a synergistic approach coupling traditional chemotherapy with Ca2+ targeting agents may also improve patient outcome. As such, targeted modulation of these pathways represents a novel approach in precision medicine and breast cancer therapy.
Collapse
Affiliation(s)
- Shane O'Grady
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Maria P Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
31
|
Makena MR, Rao R. Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 2019; 85:102109. [PMID: 31783287 DOI: 10.1016/j.ceca.2019.102109] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 01/16/2023]
Abstract
An important component of breast milk, calcium also appears as radiographically prominent microcalcifications in breast tissue that are often the earliest sign of malignancy. Ionic Ca2+ is a universal second messenger that controls a wide swathe of effector pathways integral to gene transcription, cell cycle control, differentiation, proliferation, cell migration, and apoptosis. Whereas prolonged elevation in resting Ca2+ levels drives proliferation to initiate and sustain tumor growth, depletion of calcium stores and attenuation of calcium influx pathways underlies tumor chemoresistance and evasion of apoptosis. This paradox of Ca2+ homeostasis highlights the challenge of targeting Ca2+ signaling pathways for breast cancer therapy. Furthermore, breast cancer is a heterogeneous disease classified into distinct subtypes based on tumor origin, stage of invasiveness and hormone receptor status. Classification is important for tailoring treatment, and in predicting clinical outcome or response to chemotherapy. There have been numerous reports of dysregulated expression, localization or activity of Ca2+ channels, regulators and pumps in breast cancer. An important aspect of these alterations is that they are specific to breast cancer subtype, as exemplified by a reciprocal switch in secretory pathway Ca2+-ATPase isoforms SPCA1 and SPCA2 depending on receptor status. In this review, we discuss the current knowledge of subtype specific changes in calcium channels and pumps, with a focus on functional insights that may inform new opportunities for breast cancer therapy.
Collapse
Affiliation(s)
- Monish Ram Makena
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
32
|
Grant CV, Carver CM, Hastings SD, Ramachandran K, Muniswamy M, Risinger AL, Beutler JA, Mooberry SL. Triple-negative breast cancer cell line sensitivity to englerin A identifies a new, targetable subtype. Breast Cancer Res Treat 2019; 177:345-355. [PMID: 31230251 DOI: 10.1007/s10549-019-05324-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/15/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Triple-negative breast cancers (TNBCs) represent a heterogeneous group of tumors. The lack of targeted therapies combined with the inherently aggressive nature of TNBCs results in a higher relapse rate and poorer overall survival. We evaluated the heterogeneity of TNBC cell lines for TRPC channel expression and sensitivity to cation-disrupting drugs. METHODS The TRPC1/4/5 agonist englerin A was used to identify a group of TNBC cell lines sensitive to TRPC1/4/5 activation and intracellular cation disruption. Quantitative RT-PCR, the sulforhodamine B assay, pharmacological inhibition, and siRNA-mediated knockdown approaches were employed. Epifluorescence imaging was performed to measure intracellular Ca2+ and Na+ levels. Mitochondrial membrane potential changes were monitored by confocal imaging. RESULTS BT-549 and Hs578T cells express high levels of TRPC4 and TRPC1/4, respectively, and are exquisitely, 2000- and 430-fold, more sensitive to englerin A than other TNBC cell lines. While englerin A caused a slow Na+ and nominal Ca2+ accumulation in Hs578T cells, it elicited rapid increases in cytosolic Ca2+ levels that triggered mitochondrial depolarization in BT-549 cells. Interestingly, BT-549 and Hs578T cells were also more sensitive to digoxin as compared to other TNBC cell lines. Collectively, these data reveal TRPC1/4 channels as potential biomarkers of TNBC cell lines with dysfunctional mechanisms of cation homeostasis and therefore sensitivity to cardiac glycosides. CONCLUSIONS The sensitivity of BT-549 and Hs578T cells to englerin A and digoxin suggests a subset of TNBCs are highly susceptible to cation disruption and encourages investigation of TRPC1 and TRPC4 as potential new biomarkers of sensitivity to cardiac glycosides.
Collapse
Affiliation(s)
- Corena V Grant
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Karthik Ramachandran
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Madesh Muniswamy
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA.,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA. .,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA.
| |
Collapse
|
33
|
Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. Int J Biochem Cell Biol 2019; 113:37-47. [PMID: 31173924 DOI: 10.1016/j.biocel.2019.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol (RSV) is a phytoestrogen which has been related to chemoprevention of several types of cancer. In this work, we show up to a 6-fold increased expression of ATP2A3 gene induced by RSV that triggers apoptosis and changes of intracellular Ca2+ management in MCF-7 and MDA-MB-231 breast cancer cell lines. We explored epigenetic mechanisms for that RSV-induced ATP2A3 up-regulation. The results indicate that RSV-induced ATP2A3 up-regulation correlates with about 50% of reduced HDAC activity and reduced nuclear HDAC2 expression and occupancy on ATP2A3 promoter, increasing the global acetylation of histone H3 and the enrichment of histone mark H3K27Ac on the proximal promoter of the ATP2A3 gene in MDA-MB-231 cells. We also quantified HAT activity, finding that it can be boosted with RSV treatment; however, pharmacological inhibition of p300, one of the main HATs, did not have significant effects in RSV-mediated ATP2A3 gene expression. Additionally, DNMT activity was also reduced in cells treated with RSV, as well as the expression of Methyl-DNA binding proteins MeCP2 and MBD2. However, analysis of the methylation pattern of ATP2A3 gene promoter showed un-methylated promoter in both cell lines. Taken together, the results of this work help to explain, at the molecular level, how ATP2A3 gene is regulated in breast cancer cells, and the benefits of RSV intake observed in epidemiological data, studies with animals, and in vitro models.
Collapse
|
34
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|