1
|
Hu D, Ma A, Lu H, Gao Z, Yu Y, Fan J, Liu S, Wang Y, Zhang M. LINC00963 Promotes Cisplatin Resistance in Esophageal Squamous Cell Carcinoma by Interacting with miR-10a to Upregulate SKA1 Expression. Appl Biochem Biotechnol 2024; 196:7219-7232. [PMID: 38507172 DOI: 10.1007/s12010-024-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Anqun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hongda Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiaming Fan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yancheng Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyan Zhang
- Department of Gastroenterology and Hepatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Huaiyin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Zeng W, Chen Y, Liu J, An Z, Yan H, Sun T. Preliminary exploration of SKA1 expression in lung adenocarcinoma and its clinical significance. Acta Biochim Biophys Sin (Shanghai) 2023; 55:2008-2012. [PMID: 37814813 PMCID: PMC10753369 DOI: 10.3724/abbs.2023243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Affiliation(s)
- Wen Zeng
- Department of Scientific Research and Teachingthe Central Hospital of Shaoyang CityShaoyang422000China
| | - Yong Chen
- Department of Oncologythe Central Hospital of Shaoyang CityShaoyang422000China
| | - Jun Liu
- Department of Scientific Researchthe First Affiliated Hospital of Shaoyang UniversityShaoyang422000China
| | - Zhen An
- Department of Hematology and Oncology Laboratorythe Central Hospital of Shaoyang CityShaoyang422000China
| | - Hui Yan
- Department of Hematology and Oncology Laboratorythe Central Hospital of Shaoyang CityShaoyang422000China
| | - Tao Sun
- Department of Hematology and Oncology Laboratorythe Central Hospital of Shaoyang CityShaoyang422000China
| |
Collapse
|
3
|
Ghionescu AV, Sorop A, Dima SO. The pivotal role of EMT-related noncoding RNAs regulatory axes in hepatocellular carcinoma. Front Pharmacol 2023; 14:1270425. [PMID: 37767397 PMCID: PMC10520284 DOI: 10.3389/fphar.2023.1270425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide, being the leading cause of cancer-related deaths, with limited treatment options, especially in its advanced stages. Tumor resistance is closely associated with the activation of the EMT phenomenon and its reversal, being modulated by different molecules, including noncoding RNAs (ncRNAs). Noncoding RNAs have the potential to function as both tumor suppressors and oncogenic molecules, controlling the malignant potential of HCC cells. Basically, these molecules circulate in the tumor microenvironment, encapsulated in exosomes. Their impact on cell biology is more significant than originally expected, which makes related research rather complex. The temporal and spatial expression patterns, precise roles and mechanisms of specific ncRNAs encapsulated in exosomes remain primarily unknown in different stages of the disease. This review aims to highlight the recent advances in ncRNAs related to EMT and classifies the described mechanism as direct and indirect, for a better summarization. Moreover, we provide an overview of current research on the role of ncRNAs in several drug resistance-related pathways, including the emergence of resistance to sorafenib, doxorubicin, cisplatin and paclitaxel therapy. Nevertheless, we comprehensively discuss the underlying regulatory mechanisms of exosomal ncRNAs in EMT-HCC via intercellular communication pathways.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Li Z, Huang L, Li J, Yang W, Li W, Long Q, Dai X, Wang H, Du G. Immunological role and prognostic value of the SKA family in pan-cancer analysis. Front Immunol 2023; 14:1012999. [PMID: 37180139 PMCID: PMC10169755 DOI: 10.3389/fimmu.2023.1012999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Background The spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated. Methods Using data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes. Results Our results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group. Conclusion The SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.
Collapse
Affiliation(s)
- Zhengtian Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanying Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiachen Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenkang Yang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weichao Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuzhong Long
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinyu Dai
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongtao Wang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Tuo H, Liu R, Wang Y, Yang W, Liu Q. Hypoxia-induced lncRNA MRVI1-AS1 accelerates hepatocellular carcinoma progression by recruiting RNA-binding protein CELF2 to stabilize SKA1 mRNA. World J Surg Oncol 2023; 21:111. [PMID: 36973749 PMCID: PMC10044719 DOI: 10.1186/s12957-023-02993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) perform a vital role during the progression of hepatocellular carcinoma (HCC). Here, we aimed to identify a novel lncRNA involved in HCC development and elucidate the underlying molecular mechanism. METHODS The RT-qPCR and TCGA dataset analysis were applied to explore the expressions of MRVI1-AS1 in HCC tissues and cell lines. Statistical analysis was applied to analyze the clinical significance of MRVI1-AS1 in HCC. The functions of MRVI1-AS1 in HCC cells metastasis and growth were explored by transwell assays, wound healing assay, MTT assay, EdU assay, the intravenous transplantation tumor model, and the subcutaneous xenograft tumor model. Microarray mRNA expression analysis, dual luciferase assays, and actinomycin D treatment were used to explore the downstream target of MRVI1-AS1 in HCC cells. RIP assay was applied to assess the direct interactions between CELF2 and MRVI1-AS1 or SKA1 mRNA. Rescue experiments were employed to validate the functional effects of MRVI1-AS1, CELF2, and SKA1 on HCC cells. RESULTS MRVI1-AS1 was found to be dramatically upregulated in HCC and the expression was strongly linked to tumor size, venous infiltration, TNM stage, as well as HCC patients' outcome. Cytological experiments and animal experiments showed that MRVI1-AS1 promoted HCC cells metastasis and growth. Furthermore, SKA1 was identified as the downstream targeted mRNA of MRVI1-AS1 in HCC cells, and MRVI1-AS1 increased SKA1 expression by recruiting CELF2 protein to stabilize SKA1 mRNA. In addition, we found that MRVI1-AS1 expression was stimulated by hypoxia through a HIF-1-dependent manner, which meant that MRVI1-AS was a direct downstream target gene of HIF-1 in HCC. CONCLUSION In a word, our findings elucidated that hypoxia-induced MRVI1-AS1 promotes metastasis and growth of HCC cells via recruiting CELF2 protein to stabilize SKA1 mRNA, pointing to MRVI1-AS1 as a promising clinical application target for HCC therapy.
Collapse
Affiliation(s)
- Hang Tuo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
6
|
Lan H, Yuan J, Zhang R, Jiang B, Li Q, Huang Z, Chen P, Xiang H, Zeng X, Xiao S. Pancancer analysis of SKA1 mutation and its association with the diagnosis and prognosis of human cancers. Genomics 2023; 115:110554. [PMID: 36587749 DOI: 10.1016/j.ygeno.2022.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
This study aims to explore the role of SKA1 in cancer diagnosis and prognosis and to investigate the mechanism by which SKA1 affects the malignant behaviors of ovarian cancer. Herein, we analyzed the oncogenic role of SKA1 at pan-cancer level by multiple informatics databases and verified the analysis by in vitro experiments. As a result, SKA1 was upregulated across cancers and was related to poor clinical outcome and immune infiltration. Specifically, the constructed nomogram showed superior performance in predicting the prognosis of epithelial ovarian cancer patients. Furthermore, the in vitro experiments revealed that silencing SKA1 significantly inhibited the proliferation, migratory ability and enhanced the cisplatin sensitivity of ovarian cancer cells. Therefore, we explored the oncogenic and potential therapeutic role of SKA1 across cancers through multiple bioinformatic analysis and revealed that SKA1 may promote ovarian cancer progression and chemoresistance to cisplatin by activating the AKT-FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Gynecology and Obstetrics, Changsha Central Hospital of University of South China, Changsha, Hunan, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Oncology, Huaihua Hospital of University of South China, Huaihua, Hunan, China
| | - Biyao Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaofen Li
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyan Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peiling Chen
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huimin Xiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyang Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Yu S. Overexpression of SKA Complex Is Associated With Poor Prognosis in Gliomas. Front Neurol 2022; 12:755681. [PMID: 35095717 PMCID: PMC8791909 DOI: 10.3389/fneur.2021.755681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The spindle and kinetochore-associated complex is composed of three members: SKA1, SKA2, and SKA3. It is necessary for stabilizing spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis. The SKA complex is associated with poor prognosis in several human cancers. However, the role of SKA complex in rare malignant diseases, such as gliomas, has not been fully investigated. We investigated several databases, including Oncomine, UALCAN, and cBioPortal to explore the expression profile and prognostic significance of SKA complex in patients with gliomas. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathways were used to analyze the potential enriched pathways. The genes co-expressed with SKA complex were identified and used for developing a protein-protein interaction (PPI) network using the STRING database. We found a significant overexpression of the mRNA levels of SKA1, SKA2, and SKA3 in patients with glioma patients. Higher expression of SKA1 and SKA3, but not SKA2, was significantly correlated with shorter overall survival of patients with glioma. In glioma, SKA complex was found to be involved in nuclear division, chromosome segregation, and DNA replication. The results of PPI network identified 10 hub genes (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CCNB1, MELK, TOP2A, PBK, and KIF11), all of which were overexpressed and negatively associated with prognosis of patients with glioma. In conclusion, our study sheds new insights into the biological role and prognostic significance of SKA complex in glioma.
Collapse
Affiliation(s)
- Shoukai Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhong Y, Zhuang Z, Mo P, Lin M, Gong J, Huang J, Mo H, Lu Y, Huang M. Overexpression of SKA3 correlates with poor prognosis in female early breast cancer. PeerJ 2022; 9:e12506. [PMID: 34993016 PMCID: PMC8675262 DOI: 10.7717/peerj.12506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spindle and kinetochore associated complex subunit 3 (SKA3) plays an important role in tumorigenesis and the progression of various tumors. But the relationship between SKA3 and early breast cancer remains unclear. The study aimed to explore the prognostic significance of SKA3 in breast cancer. METHODS In the study, SKA3 expression was initially assessed using the Oncomine database and The Cancer Genome Atlas database (TCGA). Then, we presented validation results for RT-qPCR (quantitative reverse transcription PCR) and ELISA (enzyme-linked immunosorbent assay). The relationship between clinical characteristics and SKA3 expression was assessed by Chi-square test and Fisher's exact test. Kaplan-Meier method and Cox regression analysis were conducted to evaluate the prognostic value of SKA3. Gene set enrichment analysis (GSEA) was performed to screen biological pathways using the TCGA dataset. Besides, single sample gene set enrichment analysis (ssGSEA) was utilized to identify immune infiltration cells about SKA3. RESULTS SKA3 mRNA was expressed at high levels in breast cancer tissues compared with normal tissues. Chi-square test and Fisher's exact test showed SKA3 expression was related to age, tumor (T) classification, node (N) classification, tumor-node-metastasis (TNM) stage, estrogen receptor (ER), progesterone receptor (PR), molecular subtype, and race. RT-qPCR results showed that SKA3 expression was overexpressed in ER, PR status, and molecular subtype in Chinese people. Kaplan-Meier curves implicated that high SKA3 expression was related to a poor prognosis in female early breast cancer patients. Cox regression models showed that high SKA3 expression could be used as an independent risk factor for female early breast cancer. Four signaling pathways were enriched in the high SKA3 expression group, including mTORC1 signaling pathway, MYC targets v1, mitotic spindle, estrogen response early. Besides, the SKA3 expression level was associate with infiltrating levels of activated CD4 T cells and eosinophils in breast cancer. CONCLUSION High SKA3 expression correlates with poor prognosis and immune infiltrates in breast cancer. SKA3 may become a biomarker for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Yue Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiju Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mandi Lin
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarong Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyan Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyun Lu
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Huang
- Galactophore Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Xu L, Jian X, Liu Z, Zhao J, Zhang S, Lin Y, Xie L. Construction and Validation of an Immune Cell Signature Score to Evaluate Prognosis and Therapeutic Efficacy in Hepatocellular Carcinoma. Front Genet 2021; 12:741226. [PMID: 34646307 PMCID: PMC8503558 DOI: 10.3389/fgene.2021.741226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with high morbidity and mortality worldwide. Tumor immune microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC. However, the effect of immune cell signatures (ICSs) representing the characteristics of TIME on the prognosis and therapeutic benefit of HCC patients remains to be further studied. Materials and methods: In total, the gene expression profiles of 1,447 HCC patients from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, and Gene Expression Omnibus, were obtained and applied. Based on a comprehensive collection of marker genes, 182 ICSs were evaluated by single sample gene set enrichment analysis. Then, by performing univariate and multivariate Cox analysis and random forest modeling, four significant signatures were selected to fit an immune cell signature score (ICSscore). Results: In this study, an ICSscore-based prognostic model was constructed to stratify HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was successfully validated in two independent cohorts. Moreover, the ICSscore values were found to positively correlate with the current American Joint Committee on Cancer staging system, indicating that ICSscore could act as a comparable biomarker for HCC risk stratification. In addition, when setting the four ICSs and ICSscores as features, the classifiers can significantly distinguish treatment-responding and non-responding samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify samples with therapeutic benefits. Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can be applied successfully for prognostic stratification and therapeutic evaluation in HCC. This study provides an insight into the therapeutic predictive efficacy of prognostic ICS, and a novel ICSscore was constructed to allow future expanded application.
Collapse
Affiliation(s)
- Linfeng Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhao Liu
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Zhao
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Siwen Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Transcript levels of spindle and kinetochore-associated complex 1/3 as prognostic biomarkers correlated with immune infiltrates in hepatocellular carcinoma. Sci Rep 2021; 11:11165. [PMID: 34045512 PMCID: PMC8160131 DOI: 10.1038/s41598-021-89628-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The spindle and kinetochore-associated protein complex (Ska) is an essential component in chromosome segregation. It comprises three proteins (Ska1, Ska2, and Ska3) with theorized roles in chromosomal instability and tumor development, and its overexpression has been widely reported in a variety of tumors. However, the prognostic significance and immune infiltration of Ska proteins in hepatocellular carcinoma (HCC) are not completely understood. The bioinformatics tools Oncomine, UALCAN, gene expression profiling interactive analysis 2 (GEPIA2), cBioPortal, GeneMANIA, Metascape, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of the Ska protein complex in HCC patients. We found that the mRNA expression of the Ska complex was markedly upregulated in HCC. High expression of the Ska complex is closely correlated with tumor stage, patient race, tumor grade, and TP53 mutation status. In addition, high expression of the Ska complex was significantly correlated with poor disease-free survival, while the high expression levels of Ska1 and Ska3 were associated with shorter overall survival. The biological functions of the Ska complex in HCC primarily involve the amplification of signals from kinetochores, the mitotic spindle, and (via a MAD2 invasive signal) unattached kinetochores. Furthermore, the expression of the complex was positively correlated with tumor-infiltrating cells. These results may provide new insights into the development of immunotherapeutic targets and prognostic biomarkers for HCC.
Collapse
|
11
|
Shen D, Zhao HY, Gu AD, Wu YW, Weng YH, Li SJ, Song JY, Gu XF, Qiu J, Zhao W. miRNA-10a-5p inhibits cell metastasis in hepatocellular carcinoma via targeting SKA1. Kaohsiung J Med Sci 2021; 37:784-794. [PMID: 34002462 DOI: 10.1002/kjm2.12392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
A variety of microRNAs (miRNAs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, the role of miR-10a-5p in the progression of HCC remains unclear. Therefore, the purpose of this study was to determine the role of miR-10a-5p in the development of HCC and the possible molecular mechanism. miR-10a-5p expression in HCC tissues and plasma from patients was detected by quantitative real-time polymerase chain reaction. Migratory changes in HCC cells were detected after the overexpression of miR-10a-5p. Epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Finally, through luciferase assay and rescue experiments, the mechanism by which miR-10a-5p regulates its downstream gene, human spindle and kinetochore-associated complex subunit 1, SKA1 and the interaction between these molecules in the development of HCC were determined. The expression of miR-10a-5p was markedly downregulated in HCC tissues, cell lines, and plasma. The overexpression of miR-10a-5p significantly inhibited the migration, invasion, and EMT of HCC cells. Furthermore, SKA1 was shown to be a downstream gene of miR-10a-5p. SKA1 silencing had the same effect as miR-10a-5p overexpression in HCC. In particular, the overexpression of SKA1 reversed the inhibitory effects of miR-10a-5p in HCC. Taken together, low miR-10a-5p expression is associated with HCC progression. miR-10a-5p inhibits the malignant development of HCC by negatively regulating SKA1.
Collapse
Affiliation(s)
- Duo Shen
- Medical School, Southeast University, Nanjing, China
| | - Hong-Yu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Dong Gu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin-Wei Wu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Hang Weng
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Yun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Feng Gu
- Medical School, Southeast University, Nanjing, China
| | - Jie Qiu
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhao
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Chen J, Ünal E. Meiotic regulation of the Ndc80 complex composition and function. Curr Genet 2021; 67:511-518. [PMID: 33745061 PMCID: PMC8254699 DOI: 10.1007/s00294-021-01174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
This review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation in human health and disease.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Liu Y, Jin ZR, Huang X, Che YC, Liu Q. Identification of Spindle and Kinetochore-Associated Family Genes as Therapeutic Targets and Prognostic Biomarkers in Pancreas Ductal Adenocarcinoma Microenvironment. Front Oncol 2020; 10:553536. [PMID: 33224872 PMCID: PMC7667267 DOI: 10.3389/fonc.2020.553536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Aim The role of spindle and kinetochore-associated (SKA) genes in tumorigenesis and cancer progression has been widely studied. However, so far, the oncogenic involvement of SKA family genes in pancreatic cancer and their prognostic potential remain unknown. Methods Here, we carried out a meta-analysis of the differential expression of SKA genes in normal and tumor tissue. Univariate and multivariate survival analyses were done to evaluate the correlation between SKA family gene expression and pancreas ductal adenocarcinoma (PDAC) prognosis. Joint-effect and stratified survival analysis as well as nomogram analysis were used to estimate the prognostic value of genes. The underlying regulatory and biological mechanisms were identified by Gene set enrichment analysis. Interaction between SKA prognosis-related genes and immune cell infiltration was assessed using the Tumor Immune Estimation Resource tool. Results We find that SKA1-3 are highly expressed in PDAC tissues relative to non-cancer tissues. Survival analysis revealed that high expression of SKA1 and SKA3 independently indicate poor prognosis but they are not associated with relapse-free survival. The prognostic value of SKA1 and SKA3 was further confirmed by the nomogram, joint-effect, and stratified survival analysis. Analysis of underlying mechanisms reveals that these genes influence cancer-related signaling pathways, kinases, miRNA, and E2F family genes. Notably, prognosis-related genes are inversely correlated with several immune cells infiltrating levels. Conclusion We find that SKA1 and SKA3 expression correlates with prognosis and immune cell infiltration in PDAC, highlighting their potential as pancreatic cancer prognostic biomarkers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zong-Rui Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Huang
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye-Cheng Che
- Department of Emergency Medicine, First People's Hospital of Fuzhou, Fuzhou, China
| | - Qin Liu
- Department of Medical Ultrasonics, Second People's Hospital of Guilin, Guilin, China
| |
Collapse
|
14
|
Yang X, Sun H, Song Y, Yang L, Liu H. Diagnostic and prognostic values of upregulated SPC25 in patients with hepatocellular carcinoma. PeerJ 2020; 8:e9535. [PMID: 32742802 PMCID: PMC7369020 DOI: 10.7717/peerj.9535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2019] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Spindle pole body component 25 (SPC25) plays a vital role in many cellular processes, such as tumorigenesis. However, the clinical significance of SPC25 in hepatocellular carcinoma (HCC) has not been investigated. This study aimed to explore the expression patterns of SPC25 in HCC and non-neoplastic tissues and to investigate the diagnostic and prognostic values of SPC25. Method The expression of SPC25 was examined in 374 HCC issues and 50 non-neoplastic tissues from The Cancer Genome Atlas (TCGA) cohort. The diagnostic and prognostic values of SPC25 were analyzed via receiver operating characteristic (ROC) curve and survival analyses, respectively. Univariate and multivariate Cox regression analyses were used to identify the prognostic factors and to establish a nomogram. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC) database. Results The expression of SPC25 in HCC tissues was significantly higher than that in normal tissues in both cohorts (all P < 0.001). The ROC curve analysis indicated that SPC25 expression has high diagnostic value in HCC with area under the curve (AUC) value of 0.969 (95% confidence interval [CI] [0.948-0.984]) and 0.945 (95% CI [0.920-0.965]) for TCGA and ICGC cohorts, respectively. Patients with HCC exhibiting high SPC25 expression were associated with worse prognosis than those exhibiting low SPC25 expression in both cohorts (all P < 0.001). SPC25 was independently associated with overall survival in both cohorts (all P < 0.001). The concordance indices of the nomogram for predicting overall survival in TCGA and ICGC cohorts were 0.647 and 0.805, respectively, which were higher than those of the American Joint Committee on Cancer (AJCC) staging system. Conclusion SPC25 was upregulated in HCC and independently predicted poor overall survival of patients with HCC. Therefore, SPC25 is an effective diagnostic and prognostic biomarker for HCC. An SPC25-based nomogram was more accurate and useful than the AJCC staging system to predict prognosis of HCC.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, China
| | - Hongzhi Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, China
| | - Li Yang
- Department of Gastroenterology, First Automobile Works General Hospital of Jilin Province, Changchun, China
| | - Haibo Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Pan W, Lu K, Wang W, Yao J, Hou Y. PALB2 as a potential prognostic biomarker for colorectal cancer. Comput Biol Chem 2020; 87:107289. [PMID: 32497983 DOI: 10.1016/j.compbiolchem.2020.107289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2019] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Partner and localizer of BRCA2 (PALB2) is regarded as a colorectal cancer (CRC) risk gene, but the prognostic implication of PALB2 in CRC remains unclear. In this study, we evaluate the prognostic value of the gene copy number alteration (CNA) and mRNA expression of PALB2 in The Cancer Genome Atlas (TCGA) database, and then validated with our database. We downloaded the copy number and mRNA data of PALB2 from TCGA database and examined the relationship among the genetic alterations, expression levels and survival outcomes. Gene ontology (GO) analysis was performed to study the function of PALB2. cBioPortal database was used to explore the potential co-expression genes of PALB2. There were 6.3% (37 of 582) CRC patients diagnosed as PALB2 gene deletion. The PALB2 deletion group expressed significantly lower of PALB2 mRNA than the non-deletion group (P < 0.001). Survival analysis showed that PALB2 deletion was significantly associated with shorter disease-free survival (DFS) (P = 0.026) and overall survival (OS) (P = 0.028). Low mRNA expression of PALB2 correlated with shorter OS (P < 0.001). Multivariate analysis also confirmed that PALB2 deletion and low mRNA expression of PALB2 were independent prognostic factors of poor OS in CRC (P = 0.019, 0.034, respectively). In validation cohort, negative expression of PALB2 was associated with shorter OS (P = 0.006) in stage I patients. Multivariate analysis confirmed that negative expression of PALB2 was a poor-prognostic factor (P = 0.002). GO analysis and co-expression analysis investigated that PALB2 is primarily involved in the DNA repair process. These results suggest that PALB2 gene copy number deletion and low mRNA expression could be novel prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Weiyu Pan
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai 200032, PR China
| | - Kui Lu
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai 200032, PR China
| | - Weixia Wang
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai 200032, PR China
| | - Junxia Yao
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 East Park Road, Qingpu District, Shanghai 200032, PR China; Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
16
|
Chen C, Guo Q, Song Y, Xu G, Liu L. SKA1/2/3 serves as a biomarker for poor prognosis in human lung adenocarcinoma. Transl Lung Cancer Res 2020; 9:218-231. [PMID: 32420061 PMCID: PMC7225159 DOI: 10.21037/tlcr.2020.01.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Background Spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3), which stabilized spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis, were dysregulated, and closely related to prognosis in several malignant tumors. Nevertheless, the potential clinical value of SKA1/2/3, especially in terms of prognosis and development of NSCLC, had not been fully elucidated. Methods ONCOMINE, GEPIA, UALCAN, TCGA, STRING and other databases were used to analyze the expression of SKA1/2/3 in patients with lung adenocarcinoma (LUAD) and its clinical value, and to explore the possible regulatory mechanism of SKA in the occurrence and development of LUAD. Results In patients with LUAD, SKA1/2/3 mRNA expression level was significantly up-regulated, and AUC was 0.9558, 0.7034 and 0.9775, respectively. Increased SKA 1/2/3 expression was associated with smoking, tissue typing, and poor prognosis in LUAD patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) showed that SKA1/2/3 was mainly enriched in DNA replication, cell cycle, homologous recombination, p53 signaling pathway, etc. Hub genes in protein-protein interactions are CDK1, BUB1, CCNA2, CDC20, CCNB2, CCNB1, BUB1B, AURKB, TOP2A and MAD2L1. Hub gene expression in LUAD is increased, and its increased expression is related to poor prognosis of LUAD patients. Finally, the expression of SKA1/2/3 and its correlation with clinicopathological features were verified in 30 clinical LUAD samples. Conclusions SKA1/2/3 may serve as a potential prognostic biomarker and target for LUAD. In addition, SKA 1/2/3 may affect the prognosis of LUAD through DNA replication, cell cycle, homologous recombination and p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Li T, Liu X, Xu B, Wu W, Zang Y, Li J, Wei L, Qian Y, Xu H, Xie M, Wang Q, Wang L. SKA1 regulates actin cytoskeleton remodelling via activating Cdc42 and influences the migration of pancreatic ductal adenocarcinoma cells. Cell Prolif 2020; 53:e12799. [PMID: 32232899 PMCID: PMC7162805 DOI: 10.1111/cpr.12799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives Spindle and kinetochore–associated protein 1(SKA1), originally identified as a protein essential for proper chromosome segregation, has been recently linked to multiple malignancies. This study aimed to explore the biological, clinical role and molecular mechanism of SKA1 in pancreatic carcinogenesis. Materials and Methods SKA1 expression was detected in 145 pancreatic ductal adenocarcinoma (PDAC) specimens by immunohistochemistry. Biological behaviour assays were used to determine the role of SKA1 in PDAC progression in vitro and in vivo. Using isobaric tags for relative and absolute quantitation (iTRAQ), SKA1’s downstream proteins were examined. Moreover, cytochalasin B and ZCL278 were used to explore the changes of SKA1‐induced signalling and cell morphology, with further confirmation by immunoblotting and immunofluorescence assays. Results Increased SKA1 expression was significantly correlated with tumour size and cellular differentiation degree in PDAC tissues. Furthermore, elevated levels of SKA1 reflected shorter overall survival (P = .019). As for biological behaviour, SKA1 acted as a tumour promotor in PDAC, overexpression of SKA1 facilitates cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, we demonstrated that SKA1 enhanced pancreatic cancer aggressiveness by inhibiting G2/M arrest and regulating actin cytoskeleton organization via activating Cdc42. Conclusions This study revealed novel roles for SKA1 as an important regulator of actin cytoskeleton organization and an oncogene in PDAC cells, which may provide insights into developing novel therapeutics.
Collapse
Affiliation(s)
- Tong Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Liu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingping Xie
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Xie Z, Dang Y, Wu H, He R, Ma J, Peng Z, Rong M, Li Z, Yang J, Jiang Y, Chen G, Yang L. Effect of CELSR3 on the Cell Cycle and Apoptosis of Hepatocellular Carcinoma Cells. J Cancer 2020; 11:2830-2844. [PMID: 32226501 PMCID: PMC7086248 DOI: 10.7150/jca.39328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) has been reported in cancers but its role and potential molecular mechanism in hepatocellular carcinoma (HCC) is unclear. Therefore, we aimed to investigate the clinical value and molecular mechanism of CELSR3 in HCC using an in vitro experiment, a meta-analysis and bioinformatics. The in vitro experiment determined the promoting effect of CELSR3 in the proliferation, invasion, and migration of HCC cells. CELSR3 knockout causes S-phage arrest in HCC cells. CELSR3 can also inhibit the apoptosis of HCC cells. The expression of the CELSR3 gene and protein was significantly elevated in HCC. Elevated CELSR3 was correlated to the bigger tumor size, higher pathological stage, and the worse overall survival of HCC. Methylation analysis revealed that the hypomethylation of CELSR3 regulated by DNMT1, DNMT3A, and DNMT3B may be the underlying mechanism of upregulated CELSR3. Biological enrichment analysis uncovered that the cell cycle, DNA replication, and PI3K-Akt signaling pathways were important pathways regulated by CELSR3 and its co-expressed genes in HCC. Taken together, upregulated CELSR3 is an important regulator in the progression and prognosis of HCC. The hypomethylation of CELSR3 and its regulation in the cell cycle may be the potential molecular mechanism in HCC.
Collapse
Affiliation(s)
- Zucheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhigang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhekun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jiapeng Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yizhao Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
19
|
Chen J, Liao A, Powers EN, Liao H, Kohlstaedt LA, Evans R, Holly RM, Kim JK, Jovanovic M, Ünal E. Aurora B-dependent Ndc80 degradation regulates kinetochore composition in meiosis. Genes Dev 2020; 34:209-225. [PMID: 31919192 PMCID: PMC7000919 DOI: 10.1101/gad.333997.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The kinetochore complex is a conserved machinery that connects chromosomes to spindle microtubules. During meiosis, the kinetochore is restructured to accommodate a specialized chromosome segregation pattern. In budding yeast, meiotic kinetochore remodeling is mediated by the temporal changes in the abundance of a single subunit called Ndc80. We previously described the regulatory events that control the timely synthesis of Ndc80. Here, we report that Ndc80 turnover is also tightly regulated in meiosis: Ndc80 degradation is active in meiotic prophase, but not in metaphase I. Ndc80 degradation depends on the ubiquitin ligase APCAma1 and is mediated by the proteasome. Importantly, Aurora B-dependent Ndc80 phosphorylation, a mark that has been previously implicated in correcting erroneous microtubule-kinetochore attachments, is essential for Ndc80 degradation in a microtubule-independent manner. The N terminus of Ndc80, including a 27-residue sequence and Aurora B phosphorylation sites, is both necessary and sufficient for kinetochore protein degradation. Finally, defects in Ndc80 turnover predispose meiotic cells to chromosome mis-segregation. Our study elucidates the mechanism by which meiotic cells modulate their kinetochore composition through regulated Ndc80 degradation, and demonstrates that Aurora B-dependent regulation of kinetochores extends beyond altering microtubule attachments.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Emily N Powers
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Hanna Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lori A Kohlstaedt
- UC Berkeley QB3 Proteomics Facility, University of California at Berkeley, Berkeley, California 94720, USA
| | - Rena Evans
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan M Holly
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jenny Kim Kim
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Marko Jovanovic
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Hu D, Li Z, Li X, Fu H, Zhang M. SKA1 overexpression is associated with the prognosis of esophageal squamous cell carcinoma and regulates cell proliferation and migration. Int J Mol Med 2019; 44:1971-1978. [PMID: 31545481 DOI: 10.3892/ijmm.2019.4343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Spindle and kinetochore‑associated protein 1 (SKA1), a microtubule‑binding subcomplex of the outer kinetochore, is essential for complete chromosomal separation. SKA1 has been suggested as a potential biomarker for various types of cancer. However, the exact role of SKA1 in esophageal squamous cell carcinoma (ESCC) remains unclear. The present study investigated whether SKA1 affects the biological behavior of ESCC. The expression of SKA1 in ESCC tissues was measured using immunohistochemistry and reverse transcription‑quantitative polymerase chain reaction. In addition, a SKA1‑silencing lentivirus was constructed, which was transfected into TE‑1 cells to establish stable SKA1‑knockdown TE‑1 cells. Proliferation was analyzed using a Celigo image cytometer and a MTS assay. Cell cycle progression and apoptosis were analyzed by flow cytometry, while cell migration was assessed using a Transwell assay. SKA1 was significantly overexpressed in ESCC tissues, and SKA1 overexpression was significantly associated with differentiation, pathological N stage and pathological tumor‑node‑metastasis stage. SKA1 was determined to be an independent prognostic factor for ESCC. Furthermore, SKA1 was significantly overexpressed in ESCC cells, and SKA1‑silencing inhibited cell proliferation and migration, arrested the cell cycle and promoted cell apoptosis. In summary, SKA1 may serve as a potential therapeutic target and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Honghao Fu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mingyan Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Xiao J, Yu H, Ma Z. LINC00339 promotes growth and invasiveness of hepatocellular carcinoma by the miR-1182/SKA1 pathway. Onco Targets Ther 2019; 12:4481-4488. [PMID: 31239716 PMCID: PMC6559240 DOI: 10.2147/ott.s207397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Extensive research has shown that long noncoding RNA (lncRNA) is involved in tumorigenesis, including hepatocellular carcinoma (HCC). The lncRNA LINC00339 was reported to regulate the development of lung cancer or breast cancer. However, whether LINC00339 participates in HCC progression remains unclear. Here, our results showed that LINC00339 was upregulated in HCC. Methods: qRT-PCR and in situ hybridization (ISH) was used to analyze LINC00339 expression in tumor tissues and cell lines. CCK8 and colony formation assays were used to analyze cell proliferation. Transwell assay was used to analyze cell migration and invasion. Xenograft experiment was used to test tumor growth in vivo. Results: LINC00339 overexpression was correlated with an advanced stage, metastasis, and bad prognosis in HCC patients. Functional investigation showed that LINC00339 knockdown significantly suppressed HCC cell proliferation, migration, and invasion. Moreover, decreased LINC00339 expression inhibited HCC growth in vivo. Mechanistically, LINC00339 could interact with miR-1182 to promote SKA1 expression. We also demonstrated that SKA1 acted as an oncogene and SKA1 upregulation reversed the effect of LINC00339 silencing. Conclusion: Our results illustrated that the LINC00339/miR-1182/SKA1 axis plays an essential role in HCC progression.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| | - Zhongwu Ma
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, People's Republic of China
| |
Collapse
|