1
|
Joo EH, Kim S, Park D, Lee T, Park WY, Han KY, Lee JE. Migratory Tumor Cells Cooperate with Cancer Associated Fibroblasts in Hormone Receptor-Positive and HER2-Negative Breast Cancer. Int J Mol Sci 2024; 25:5876. [PMID: 38892065 PMCID: PMC11172245 DOI: 10.3390/ijms25115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-BC) is the most common type with a favorable prognosis under endocrine therapy. However, it still demonstrates unpredictable progression and recurrences influenced by high tumoral diversity and microenvironmental status. To address these heterogeneous molecular characteristics of HR+/HER2-BC, we aimed to simultaneously characterize its transcriptomic landscape and genetic architecture at the same resolution. Using advanced single-cell RNA and DNA sequencing techniques together, we defined four distinct tumor subtypes. Notably, the migratory tumor subtype was closely linked to genomic alterations of EGFR, related to the tumor-promoting behavior of IL6-positive inflammatory tumor-associated fibroblast, and contributing to poor prognosis. Our study comprehensively utilizes integrated analysis to uncover the complex dynamics of this breast cancer subtype, highlighting the pivotal role of the migratory tumor subtype in influencing surrounding cells. This sheds light on potential therapeutic targets by offering enhanced insights for HR+/HER2-BC treatment.
Collapse
Affiliation(s)
- Eun Hye Joo
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (E.H.J.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea;
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Donghyun Park
- Planit Healthcare Inc., Seoul 06235, Republic of Korea;
| | - Taeseob Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea;
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (E.H.J.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (E.H.J.); (W.-Y.P.)
| | - Jeong Eon Lee
- Department of Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea;
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
2
|
Pommerenke C, Nagel S, Haake J, Koelz AL, Christgen M, Steenpass L, Eberth S. Molecular Characterization and Subtyping of Breast Cancer Cell Lines Provide Novel Insights into Cancer Relevant Genes. Cells 2024; 13:301. [PMID: 38391914 PMCID: PMC10886524 DOI: 10.3390/cells13040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Bioinformatics, IT and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Josephine Haake
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Anne Leena Koelz
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Steenpass
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| |
Collapse
|
3
|
Kumar N, Gann PH, McGregor SM, Sethi A. Quantification of subtype purity in Luminal A breast cancer predicts clinical characteristics and survival. Breast Cancer Res Treat 2023:10.1007/s10549-023-06961-9. [PMID: 37209182 DOI: 10.1007/s10549-023-06961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE PAM50 profiling assigns each breast cancer to a single intrinsic subtype based on a bulk tissue sample. However, individual cancers may show evidence of admixture with an alternate subtype that could affect prognosis and treatment response. We developed a method to model subtype admixture using whole transcriptome data and associated it with tumor, molecular, and survival characteristics for Luminal A (LumA) samples. METHODS We combined TCGA and METABRIC cohorts and obtained transcriptome, molecular, and clinical data, which yielded 11,379 gene transcripts in common and 1,178 cases assigned to LumA. We used semi-supervised non-negative matrix factorization (ssNMF) to compute the subtype admixture proportions of the four major subtypes-pLumA, pLumB, pHER2, and pBasal-for each case and measured associations with tumor characteristics, molecular features, and survival. RESULTS Luminal A cases in the lowest versus highest quartile for pLumA transcriptomic proportion had a 27% higher prevalence of stage > 1, nearly a threefold higher prevalence of TP53 mutation, and a hazard ratio of 2.08 for overall mortality. We found positive associations between pHER2 and HER2 positivity by IHC or FISH; between pLumB and PR negativity; and between pBasal and younger age, node positivity, TP53 mutation, and EGFR expression. Predominant basal admixture, in contrast to predominant LumB or HER2 admixture, was not associated with shorter survival. CONCLUSION Bulk sampling for genomic analyses provides an opportunity to expose intratumor heterogeneity, as reflected by subtype admixture. Our results elucidate the striking extent of diversity among LumA cancers and suggest that determining the extent and type of admixture holds promise for refining individualized therapy. LumA cancers with a high degree of basal admixture appear to have distinct biological characteristics that warrant further study.
Collapse
Affiliation(s)
- Neeraj Kumar
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Peter H Gann
- Department of Pathology, College of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amit Sethi
- Department of Pathology, College of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Mercatelli D, Formaggio F, Caprini M, Holding A, Giorgi F. Detection of subtype-specific breast cancer surface protein biomarkers via a novel transcriptomics approach. Biosci Rep 2021; 41:BSR20212218. [PMID: 34750607 PMCID: PMC8655506 DOI: 10.1042/bsr20212218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cell-surface proteins have been widely used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. So far, very few attempts have been made to characterize the surfaceome of patients with breast cancer, particularly in relation with the current molecular breast cancer (BRCA) classification. In this view, we developed a new computational method to infer cell-surface protein activities from transcriptomics data, termed 'SURFACER'. METHODS Gene expression data from GTEx were used to build a normal breast network model as input to infer differential cell-surface proteins activity in BRCA tissue samples retrieved from TCGA versus normal samples. Data were stratified according to the PAM50 transcriptional subtypes (Luminal A, Luminal B, HER2 and Basal), while unsupervised clustering techniques were applied to define BRCA subtypes according to cell-surface proteins activity. RESULTS Our approach led to the identification of 213 PAM50 subtypes-specific deregulated surface genes and the definition of five BRCA subtypes, whose prognostic value was assessed by survival analysis, identifying a cell-surface activity configuration at increased risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the performance of 11 different machine learning classification algorithms. CONCLUSIONS BRCA patients can be stratified into five surface activity-specific groups having the potential to identify subtype-specific actionable targets to design tailored targeted therapies or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying surface-activity profiles at higher risk.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrew Holding
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, U.K
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Ray SK, Mukherjee S. Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine. Curr Mol Med 2021; 22:835-850. [PMID: 34872474 DOI: 10.2174/1566524021666211206092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
The mechanisms governing the development and progression of cancers are believed to be the consequence of hereditary deformities and epigenetic modifications. Accordingly, epigenetics has become an incredible and progressively explored field of research to discover better prevention and therapy for neoplasia, especially triple-negative breast cancer (TNBC). It represents 15-20% of all invasive breast cancers and will, in general, have bellicose histological highlights and poor clinical outcomes. In the early phases of triple-negative breast carcinogenesis, epigenetic deregulation modifies chromatin structure and influences the plasticity of cells. It up-keeps the oncogenic reprogramming of malignant progenitor cells with the acquisition of unrestrained selfrenewal capacities. Genomic impulsiveness in TNBC prompts mutations, copy number variations, as well as genetic rearrangements, while epigenetic remodeling includes an amendment by DNA methylation, histone modification, and noncoding RNAs of gene expression profiles. It is currently evident that epigenetic mechanisms assume a significant part in the pathogenesis, maintenance, and therapeutic resistance of TNBC. Although TNBC is a heterogeneous malaise that is perplexing to describe and treat, the ongoing explosion of genetic and epigenetic research will help to expand these endeavors. Latest developments in transcriptome analysis have reformed our understanding of human diseases, including TNBC at the molecular medicine level. It is appealing to envision transcriptomic biomarkers to comprehend tumor behavior more readily regarding its cellular microenvironment. Understanding these essential biomarkers and molecular changes will propel our capability to treat TNBC adequately. This review will depict the different aspects of epigenetics and the landscape of transcriptomics in triple-negative breast carcinogenesis and their impending application for diagnosis, prognosis, and treatment decision with the view of molecular medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
6
|
Cherian Kurian N, Sethi A, Reddy Konduru A, Mahajan A, Rane SU. A 2021 update on cancer image analytics with deep learning. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2021. [DOI: 10.1002/widm.1410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nikhil Cherian Kurian
- Department of Electrical Engineering Indian Institute of Technology, Bombay Mumbai India
| | - Amit Sethi
- Department of Electrical Engineering Indian Institute of Technology, Bombay Mumbai India
| | - Anil Reddy Konduru
- Department of Pathology Tata Memorial Center‐ACTREC, HBNI Navi Mumbai India
| | - Abhishek Mahajan
- Department of Radiology Tata Memorial Hospital, HBNI Mumbai India
| | - Swapnil Ulhas Rane
- Department of Pathology Tata Memorial Center‐ACTREC, HBNI Navi Mumbai India
| |
Collapse
|
7
|
PAM50 Intrinsic Subtype Profiles in Primary and Metastatic Breast Cancer Show a Significant Shift toward More Aggressive Subtypes with Prognostic Implications. Cancers (Basel) 2021; 13:cancers13071592. [PMID: 33808271 PMCID: PMC8037951 DOI: 10.3390/cancers13071592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The majority of breast cancer deaths are caused by the spread of the disease to distant locations. The biological processes and molecular characteristics that eventually transform breast cancer into a life-threatening metastatic disease are not fully understood. The molecular subtyping of breast cancer into four tumor subtypes—namely luminal A, luminal B, human epidermal growth factor receptor 2-enriched, and basal-like subtypes—has been implemented for therapeutic guidance in patients with early breast cancer. It is not settled whether molecular subtypes in metastatic tissue can guide the choice of systemic therapy and how these subtypes may change throughout tumor progression. In this study, breast cancer subtypes at different stages of the disease were investigated, and we found changes to more unfavorable subtypes to be common throughout the progression of the disease. These findings suggests that molecular subtyping in metastatic disease could add important prognostic and predictive information to complement information from the primary tumor. Abstract Background: PAM50 breast cancer intrinsic subtyping adds prognostic information in early breast cancer; however, the role in metastatic disease is unclear. We aimed to identify PAM50 subtypes in primary tumors (PTs) and metastases to outline subtype changes and their prognostic role. Methods: RNA was isolated from PTs, lymph node metastases (LNMs), and distant metastases (DMs) in metastatic breast cancer patients (n = 140) included in a prospective study (NCT01322893). Gene expression analyses were performed using the Breast Cancer 360 (BC360) assay from Nano-String. The subtype shifts were evaluated using McNemar and symmetry tests, and clinical outcomes were evaluated with log-rank tests and Cox regression. Results: The PAM50 subtype changed in 25/59 of paired samples between PTs and LNMs (Psymmetry = 0.002), in 31/61 between PTs and DMs (Psymmetry < 0.001), and in 16/38 between LNMs and DMs (Psymmetry = 0.004). Shifts toward subtypes with worse outcomes were the most common. Patients with shifts from the luminal PT to non-luminal DM subtypes had worse progression-free survival compared to patients with a stable subtype (hazard ratio (HR): 2.3; 95% confidence interval (CI): 1.14–4.68, p = 0.02). Conclusion: Strong evidence of PAM50 subtype shifts toward unfavorable subtypes were seen between PTs and metastatic samples. For patients with a shift in subtype from luminal PT to non-luminal DM, a worse prognosis was noted.
Collapse
|
8
|
Barchiesi G, Mazzotta M, Krasniqi E, Pizzuti L, Marinelli D, Capomolla E, Sergi D, Amodio A, Natoli C, Gamucci T, Vizza E, Marchetti P, Botti C, Sanguineti G, Ciliberto G, Barba M, Vici P. Neoadjuvant Endocrine Therapy in Breast Cancer: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:E3528. [PMID: 32429381 PMCID: PMC7278946 DOI: 10.3390/ijms21103528] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
In locally advanced (LA) breast cancer (BC), neoadjuvant treatments have led to major achievements, which hold particular relevance in HER2-positive and triple-negative BC. Conversely, their role in hormone receptor positive (HR+), hormone epidermal growth factor 2 negative (HER2-) BC is still under debate, mainly due to the generally low rates of pathological complete response (pCR) and lower accuracy of pCR as predictors of long-term outcomes in this patient subset. While administration of neoadjuvant chemotherapy (NCT) in LA, HR+, HER2- BC patients is widely used in clinical practice, neoadjuvant endocrine therapy (NET) still retains an unfulfilled potential in the management of these subgroups, particularly in elderly and unfit patients. In addition, NET has gained a central role as a platform to test new drugs and predictive biomarkers in previously untreated patients. We herein present historical data regarding Tamoxifen and/or Aromatase Inhibitors and a debate on recent evidence regarding agents such as CDK4/6 and PI3K/mTOR inhibitors in the neoadjuvant setting. We also discuss key issues concerning the optimal treatment length, appropriate comparisons with NCT efficacy and use of NET in premenopausal patients.
Collapse
Affiliation(s)
| | - Marco Mazzotta
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Daniele Marinelli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University; Medical Oncology Unit, 00189 Rome, Italy; (D.M.); (P.M.)
| | - Elisabetta Capomolla
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Domenico Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Antonella Amodio
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Clara Natoli
- Department of Medical, Oral & Biotechnological Sciences, University G. D’Annunzio, 66100 Chieti-Pescara, Italy;
| | - Teresa Gamucci
- Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Enrico Vizza
- Department of Oncological Surgery, Gynecologic Oncologic Unit, “Regina Elena” National Cancer Institute, 00144 Rome, Italy;
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University; Medical Oncology Unit, 00189 Rome, Italy; (D.M.); (P.M.)
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University, 00161 Rome, Italy
| | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (E.K.); (L.P.); (E.C.); (D.S.); (A.A.); (P.V.)
| |
Collapse
|