1
|
Kjeldsen MK, Jørgensen M, Grønseth DSB, Schønemann-Lund M, Nyvang GB, Haslund CA, Knudsen AO, Motavaf AK, Malander S, Anttila M, Lindahl G, Mäenpää J, Dimoula M, Werner TL, Iversen TZ, Hietanen S, Fokdal L, Dahlstrand H, Bjørge L, Birrer MJ, Mirza MR, Rossing M. Beyond HRD Status: Unraveling Genetic Variants Impacting PARP Inhibitor Sensitivity in Advanced Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:3190-3200. [PMID: 39591206 PMCID: PMC11670052 DOI: 10.1158/2767-9764.crc-24-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
SIGNIFICANCE The irregular response to PARPi in HRD-positive and -negative tumors highlights the need for identifying additional biomarkers. This study explores the mutational landscape beyond HRD status in AOC, ultimately advancing precision oncology in future clinical practice.
Collapse
Affiliation(s)
- Maj K. Kjeldsen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
| | - Morten Jørgensen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dina Sofie B. Grønseth
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Schønemann-Lund
- Department of Anesthesia and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Gitte-Bettina Nyvang
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Charlotte Aaquist Haslund
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Oer Knudsen
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Susanne Malander
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
| | - Maarit Anttila
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Gabriel Lindahl
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Mäenpää
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Tampere University and Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Maria Dimoula
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Trine Zeeberg Iversen
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Herlev-Gentofte University Hospital, Herlev, Denmark
| | - Sakari Hietanen
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Turku University Hospital and FICAN West, Turku, Finland
| | - Lars Fokdal
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Odense, Denmark
| | - Hanna Dahlstrand
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Oncology-Pathology, Karolinska Institutet and Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Line Bjørge
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | | | - Mansoor R. Mirza
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Nordic Society of Gynecological Oncology-Clinical Trial Unit (NSGO-CTU), Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Garbuzenko OB, Sapiezynski J, Girda E, Rodriguez-Rodriguez L, Minko T. Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307462. [PMID: 38342698 PMCID: PMC11316847 DOI: 10.1002/smll.202307462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The response to treatment is substantially varied between individual patients with ovarian cancer. However, chemotherapy treatment plans rarely pay sufficient attention to the mentioned factors. Instead, standardized treatment protocols are usually employed for most ovarian cancer patients. Variations in an individual's sensitivity to drugs significantly limit the effectiveness of treatment in some patients and lead to severe toxicities in others. In the present investigation, a nanotechnology-based approach for personalized treatment of ovarian carcinoma (the most lethal type of gynecological cancer) constructed on the individual genetic profile of the patient's tumor is developed and validated. The expression of predefined genes and proteins is analyzed for each patient sample. Finally, a mixture of the complex nanocarrier-based targeted delivery system containing drug(s)/siRNA(s)/targeted peptide is selected from the pre-synthesized bank and tested in vivo on murine cancer model using cancer cells isolated from tumors of each patient. Based on the results of the present study, an innovative approach and protocol for personalized treatment of ovarian cancer are suggested and evaluated. The results of the present study clearly show the advantages and perspectives of the proposed individual treatment approach.
Collapse
Affiliation(s)
- Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Eugenia Girda
- Department of Gynecology Oncology, Robert Wood Johnson School of Medicine, Rutgers the State University of New Jersey, New Brunswick, NJ USA 08901
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| |
Collapse
|
3
|
Telli ML, Litton JK, Beck JT, Jones JM, Andersen J, Mina LA, Brig R, Danso M, Yuan Y, Symmans WF, Hopkins JF, Albacker LA, Abbattista A, Noonan K, Mata M, Laird AD, Blum JL. Neoadjuvant talazoparib in patients with germline BRCA1/2 mutation-positive, early-stage triple-negative breast cancer: exploration of tumor BRCA mutational status. Breast Cancer 2024; 31:886-897. [PMID: 38869771 PMCID: PMC11341741 DOI: 10.1007/s12282-024-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Talazoparib monotherapy in patients with germline BRCA-mutated, early-stage triple-negative breast cancer (TNBC) showed activity in the neoadjuvant setting in the phase II NEOTALA study (NCT03499353). These biomarker analyses further assessed the mutational landscape of the patients enrolled in the NEOTALA study. METHODS Baseline tumor tissue from the NEOTALA study was tested retrospectively using FoundationOne®CDx. To further hypothesis-driven correlative analyses, agnostic heat-map visualizations of the FoundationOne®CDx tumor dataset were used to assess overall mutational landscape and identify additional candidate predictive biomarkers of response. RESULTS All patients enrolled (N = 61) had TNBC. In the biomarker analysis population, 75.0% (39/52) and 25.0% (13/52) of patients exhibited BRCA1 and BRCA2 mutations, respectively. Strong concordance (97.8%) was observed between tumor BRCA and germline BRCA mutations, and 90.5% (38/42) of patients with tumor BRCA mutations evaluable for somatic-germline-zygosity were predicted to exhibit BRCA loss of heterozygosity (LOH). No patients had non-BRCA germline DNA damage response (DDR) gene variants with known/likely pathogenicity, based on a panel of 14 non-BRCA DDR genes. Ninety-eight percent of patients had TP53 mutations. Genomic LOH, assessed continuously or categorically, was not associated with response. CONCLUSION The results from this exploratory biomarker analysis support the central role of BRCA and TP53 mutations in tumor pathobiology. Furthermore, these data support assessing germline BRCA mutational status for molecular eligibility for talazoparib in patients with TNBC.
Collapse
Affiliation(s)
- Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Thaddeus Beck
- Department of Medical Oncology and Hematology, Highlands Oncology, Springdale, AR, USA
| | - Jason M Jones
- Avera Medical Group Oncology & Hematology, Avera Cancer Institute, Sioux Falls, SD, USA
| | - Jay Andersen
- Medical Oncology, Compass Oncology, West Cancer Center, US Oncology Network, Tigard, OR, USA
| | - Lida A Mina
- Hematology Oncology Department, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Raymond Brig
- Medical Oncology, Brig Center for Cancer Care and Survivorship, Knoxville, TN, USA
| | - Michael Danso
- Medical Oncology, Virginia Oncology Associates, Norfolk, VA, USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, Cedars-Sinai Cancer Center, West Hollywood, CA, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Kay Noonan
- Clinical Oncology, Pfizer Inc., Groton, CT, USA
| | | | | | - Joanne L Blum
- Department of Oncology, Texas Oncology-Baylor Charles A. Sammons Cancer Center, US Oncology Network, Dallas, TX, USA
| |
Collapse
|
4
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Rognoni C, Lorusso D, Costa F, Armeni P. Cost-Effectiveness Analysis of HRD Testing for Previously Treated Patients with Advanced Ovarian Cancer in Italy. Adv Ther 2024; 41:1385-1400. [PMID: 38329713 PMCID: PMC10960911 DOI: 10.1007/s12325-024-02791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Ovarian cancer (OC) is the eighth most common cancer among women, and homologous recombination deficiency (HRD) is present in approximately 50% of these patients. For this group, poly(ADP-ribose) polymerase (PARP) inhibitors are more likely to be effective. The aim of the study was to investigate the cost-effectiveness of HRD testing versus BRCA testing (which identifies mutations present only in 25% of patients) in Italy to optimize the treatment management, possibly with PARP inhibitors. METHODS A cost-effectiveness partition survival model was developed to estimate the expected costs and outcomes (life years, LYs; quality-adjusted life years, QALYs) with lifetime horizon of HRD testing versus BRCA testing alone in women with high-grade serous or endometrioid advanced ovarian cancer. The option to perform the tests in sequence, that is, the BRCA test followed by the HRD test, in patients with BRCA-negative test was also considered, and the model accounted for the National Healthcare Service (NHS) perspective in Italy. The treatments represented the best available options according to the initial test results and according to PARP inhibitors available in Italy. A 3% discount rate was applied. Both deterministic and probabilistic sensitivity analyses were performed to test the robustness of the model results. RESULTS HRD testing was shown to be a cost-effective strategy compared to BRCA testing (incremental cost-utility ratio 22,610€/QALY) and a cost-saving strategy compared to the sequence of tests. The probabilistic sensitivity analysis showed that the HRD test is cost-effective compared to BRCA testing in 98.5% of model simulations considering a willingness-to-pay threshold of 50,000€/QALY. CONCLUSION The identification of genetic anomalies in patients with advanced OC is a costly process. Regardless, HRD upfront testing compared to BRCA testing had a cost-effective profile, allowing the efficient use of healthcare resources and better life expectancy and quality of life for patients.
Collapse
Affiliation(s)
- Carla Rognoni
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Bocconi University, Via Sarfatti 10, 20136, Milan, Italy.
| | - Domenica Lorusso
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Francesco Costa
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Bocconi University, Via Sarfatti 10, 20136, Milan, Italy
| | - Patrizio Armeni
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Bocconi University, Via Sarfatti 10, 20136, Milan, Italy
| |
Collapse
|
6
|
Wei J, Ji K, Zhang Y, Zhang J, Wu X, Ji X, Zhou K, Yang X, Lu H, Wang A, Bu Z. Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach. Cell Oncol (Dordr) 2024; 47:677-693. [PMID: 37943484 DOI: 10.1007/s13402-023-00892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS. METHODS Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively. RESULTS A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy. CONCLUSION Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.
Collapse
Affiliation(s)
- Jingtao Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ke Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yue Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Ji Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaojiang Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Kai Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xuesong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hongfeng Lu
- Berry Genomics Corporation, Beijing, 102206, China
| | - Anqiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Zhaode Bu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
7
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Albitar M, Zhang H, Pecora A, Waintraub S, Graham D, Hellmann M, McNamara D, Charifa A, De Dios I, Ma W, Goy A. Homologous Recombination Abnormalities Associated With BRCA1/2 Mutations as Predicted by Machine Learning of Targeted Next-Generation Sequencing Data. Breast Cancer (Auckl) 2023; 17:11782234231198979. [PMID: 37789896 PMCID: PMC10542224 DOI: 10.1177/11782234231198979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Background Homologous recombination deficiency (HRD) is the hallmark of breast cancer gene 1/2 (BRCA1/2)-mutated tumors and the unique biomarker for predicting response to double-strand break (DSB)-inducing drugs. The demonstration of HRD in tumors with mutations in genes other than BRCA1/2 is considered the best biomarker of potential response to these DSB-inducer drugs. Objectives We explored the potential of developing a practical approach to predict in any tumor the presence of HRD that is similar to that seen in tumors with BRCA1/2 mutations using next-generation sequencing (NGS) along with machine learning (ML). Design We use copy number alteration (CNA) generated from routine-targeted NGS data along with a modified naïve Bayesian model for the prediction of the presence of HRD. Methods The CNA from NGS of 434 targeted genes was analyzed using CNVkit software to calculate the log2 of CNA changes. The log2 values of various sequencing reads (bins) were used in ML to train the system on predicting tumors with BRCA1/2 mutations and tumors with abnormalities similar to those detected in BRCA1/2 mutations. Results Using 31 breast or ovarian cancers with BRCA1/2 mutations and 84 tumors without mutations in any of 12 homologous recombination repair (HRR) genes, the ML demonstrated high sensitivity (90%, 95% confidence interval [CI] = 73%-97.5%) and specificity (98%, 95% CI = 90%-100%). Testing of 114 tumors with mutations in HRR genes other than BRCA1/2 showed 39% positivity for HRD similar to that seen in BRCA1/2. Testing 213 additional wild-type (WT) cancers showed HRD positivity similar to BRCA1/2 in 32% of cases. Correlation with proportional loss of heterozygosity (LOH) as determined using whole exome sequencing of 51 samples showed 90% (95% CI = 72%-97%) concordance. The approach was also validated in an independent set of 1312 consecutive tumor samples. Conclusions These data demonstrate that CNA when combined with ML can reliably predict the presence of BRCA1/2 level HRD with high specificity. Using BRCA1/2 mutant cases as gold standard, this ML can be used to predict HRD in cancers with mutations in other HRR genes as well as in WT tumors.
Collapse
Affiliation(s)
| | - Hong Zhang
- Genomic Testing Cooperative, Irvine, CA, USA
| | - Andrew Pecora
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Stanley Waintraub
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Deena Graham
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mira Hellmann
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Donna McNamara
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | | | | | - Wanlong Ma
- Genomic Testing Cooperative, Irvine, CA, USA
| | - Andre Goy
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
9
|
Bukłaho PA, Kiśluk J, Nikliński J. Diagnostics and treatment of ovarian cancer in the era of precision medicine - opportunities and challenges. Front Oncol 2023; 13:1227657. [PMID: 37746296 PMCID: PMC10516548 DOI: 10.3389/fonc.2023.1227657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Due to predictions of increasing incidences and deaths from ovarian cancer, this neoplasm is a challenge for modern health care. The advent of NGS technology has made it possible to understand the molecular characteristics of many cancers, including ovarian cancer. The data obtained in research became the basis for the development of molecularly targeted therapies thus leading to the entry of NGS analysis into the diagnostic process of oncological patients. This review presents targeted therapies currently in preclinical or clinical trials, whose promising results offer hope for their use in clinical practice in the future. As more therapeutic options emerge, it will be necessary to modify molecular diagnostic regimens to select the best treatment for a given patient. New biomarkers are needed to predict the success of planned therapy. An important aspect of public health is molecular testing in women with a familial predisposition to ovarian cancer enabling patients to be included in prevention programs. NGS technology, despite its high throughput, poses many challenges, from the quality of the diagnostic material used for testing to the interpretation of results and classification of sequence variants. The article highlights the role of molecular testing in ongoing research and also its role in the diagnostic and therapeutic process in the era of personalized medicine. The spread of genetic testing in high-risk groups, the introduction of more targeted therapies and also the possibility of agnostic therapies could significantly improve the health situation for many women worldwide.
Collapse
Affiliation(s)
- Patrycja Aleksandra Bukłaho
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
- Doctoral School, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Algethami M, Kulkarni S, Sadiq MT, Tang HKC, Brownlie J, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Towards Personalized Management of Ovarian Cancer. Cancer Manag Res 2022; 14:3469-3483. [PMID: 36545222 PMCID: PMC9762171 DOI: 10.2147/cmar.s366681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Despite advances in surgery and chemotherapy, the overall outcomes for patients with advanced ovarian cancer remain poor. Although initial response rates to platinum-based chemotherapy is about 60-80%, most patients will have recurrence and succumb to the disease. However, a DNA repair-directed precision medicine strategy has recently generated real hope in improving survival. The clinical development of PARP inhibitors has transformed lives for many patients with BRCA germline-deficient and/or platinum-sensitive epithelial ovarian cancers. Antiangiogenic agents and intraperitoneal chemotherapy approaches may also improve outcomes in patients. Moreover, evolving immunotherapeutic opportunities could also positively impact patient outcomes. Here we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in ovarian cancer.
Collapse
Affiliation(s)
- Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Sanat Kulkarni
- Department of Medicine, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
| | - Maaz T Sadiq
- Cancer Centre, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham, B15 2GW, UK
| | - Hiu K C Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK
| |
Collapse
|
11
|
Seligson ND, Tang J, Jin DX, Bennett MP, Elvin JA, Graim K, Hays JL, Millis SZ, Miles WO, Chen JL. Drivers of genomic loss of heterozygosity in leiomyosarcoma are distinct from carcinomas. NPJ Precis Oncol 2022; 6:29. [PMID: 35468996 PMCID: PMC9038792 DOI: 10.1038/s41698-022-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Leiomyosarcoma (LMS) is a rare, aggressive, mesenchymal tumor. Subsets of LMS have been identified to harbor genomic alterations associated with homologous recombination deficiency (HRD); particularly alterations in BRCA2. Whereas genomic loss of heterozygosity (gLOH) has been used as a surrogate marker of HRD in other solid tumors, the prognostic or clinical value of gLOH in LMS (gLOH-LMS) remains poorly defined. We explore the genomic drivers associated with gLOH-LMS and their clinical import. Although the distribution of gLOH-LMS scores are similar to that of carcinomas, outside of BRCA2, there was no overlap with previously published gLOH-associated genes from studies in carcinomas. We note that early stage tumors with elevated gLOH demonstrated a longer disease-free interval following resection in LMS patients. Taken together, and despite similarities to carcinomas in gLOH distribution and clinical import, gLOH-LMS are driven by different genomic signals. Additional studies will be required to isolate and confirm the unique differences in biological factors driving these differences.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joy Tang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Monica P Bennett
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | | | - Kiley Graim
- Department of Computer and Information Science and Engineering, The University of Florida, Gainesville, FL, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | | | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Li Y, Nie Y, Guo H, Guo H, Ha C, Li Y. Establish of an Initial Platinum-Resistance Predictor in High-Grade Serous Ovarian Cancer Patients Regardless of Homologous Recombination Deficiency Status. Front Oncol 2022; 12:847085. [PMID: 35372049 PMCID: PMC8971787 DOI: 10.3389/fonc.2022.847085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Ovarian cancer (OC) is still the leading aggressive and lethal disease of gynecological cancers, and platinum-based regimes are the standard treatments. However, nearly 20%–30% of patients with OC are initial platinum resistant (IPR), and there is a lack of valid tools to predict whether they will be primary platinum resistant or not prior to chemotherapy. Methods Transcriptome data from The Cancer Genome Atlas (TCGA) was downloaded as the training data, and transcriptome data of GSE15622, GSE102073, GSE19829, and GSE26712 were retrieved from Gene Expression Omnibus (GEO) as the validation cohorts. Differentially expressed genes (DEGs) were selected between platinum-sensitive and platinum-resistant patients from the training cohort, and multiple machine-learning algorithms [including random forest, XGboost, and least absolute shrinkage and selection operator (LASSO) regression] were utilized to determine the candidate genes from DEGs. Then, we applied logistic regression to establish the IPR signature based on the expression. Finally, comprehensive clinical, genomic, and survival feature were analyzed to understand the application value of the established IPR signature. Results A total of 532 DEGs were identified between platinum-resistant and platinum-sensitive samples, and 11 of them were shared by these three-machine learning algorithms and utilized to construct an IPR prediction signature. The area under receiver operating characteristic curve (AUC) was 0.841 and 0.796 in the training and validation cohorts, respectively. Notably, the prediction capacity of this signature was stable and robust regardless of the patients’ homologous recombination deficiency (HRD) and mutation burden status. Meanwhile, the genomic feature was concordant between samples with high- or low-IPR signature, except a significantly higher prevalence of gain at Chr19q.12 (regions including CCNE1) in the high-IPR signature samples. The efficacy of prediction of platinum resistance of IPR signature successfully transferred to the precise survival prediction, with the AUC of 0.71, 0.72, and 0.66 to predict 1-, 3-, and 5-year survival, respectively. At last, we found a significantly different tumor-infiltrated lymphocytes feature, including lower abundance of CD4+ naive T cells in the samples with high-IPR signature. A relatively lower tumor immune dysfunction and exclusion (TIDE) value and more sensitivity to multiple therapies including Gefitinib may suggest the potency to transfer from platinum-based therapy to immunotherapy or target therapies in patients with high-IPR signature. Conclusion Our study established an IPR signature based on the expression of 11 genes that could stably and robustly distinguish OC patients with IPR and/or poor outcomes, which may guide therapeutic regimes tailoring.
Collapse
Affiliation(s)
- Yongmei Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yufei Nie
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hua Guo
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Chunfang Ha, ; Yuan Li,
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Chunfang Ha, ; Yuan Li,
| |
Collapse
|
13
|
Lim MC, Chang SJ, Park B, Yoo HJ, Yoo CW, Nam BH, Park SY. Survival After Hyperthermic Intraperitoneal Chemotherapy and Primary or Interval Cytoreductive Surgery in Ovarian Cancer: A Randomized Clinical Trial. JAMA Surg 2022; 157:374-383. [PMID: 35262624 PMCID: PMC8908225 DOI: 10.1001/jamasurg.2022.0143] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Question Does hyperthermic intraperitoneal chemotherapy (HIPEC) after primary or interval cytoreductive surgery increase survival in patients with ovarian cancer? Findings In this randomized clinical trial of 184 women with ovarian cancer, among those who underwent interval cytoreductive surgery after neoadjuvant chemotherapy, the addition of HIPEC decreased recurrence and increased overall survival; however, in patients undergoing primary cytoreductive surgery, progression-free survival and overall survival were not improved. No unresolved serious HIPEC-related adverse events were found in either group. Meaning These results suggest that HIPEC after interval cytoreductive surgery may increase progression-free and overall survival in patients with ovarian cancer who receive neoadjuvant chemotherapy. Importance Ovarian cancer has the highest mortality rate among gynecologic malignant tumors. Data are lacking on the survival benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in women with ovarian cancer who underwent primary or interval cytoreductive surgery. Objective To assess the clinical benefit of HIPEC after primary or interval maximal cytoreductive surgery in women with stage III or IV primary advanced ovarian cancer. Design, Setting, and Participants In this single-blind randomized clinical trial performed at 2 institutions in South Korea from March 2, 2010, to January 22, 2016, a total of 184 patients with stage III or IV ovarian cancer with residual tumor size less than 1 cm were randomized (1:1) to a HIPEC (41.5 °C, 75 mg/m2 of cisplatin, 90 minutes) or control group. The primary end point was progression-free survival. Overall survival and adverse events were key secondary end points. The date of the last follow-up was January 10, 2020, and the data were locked on February 17, 2020. Exposures Hyperthermic intraperitoneal chemotherapy after cytoreductive surgery. Main Outcomes and Measures Progression-free and overall survival. Results Of the 184 Korean women who underwent randomization, 92 were randomized to the HIPEC group (median age, 52.0 years; IQR, 46.0-59.5 years) and 92 to the control group (median age, 53.5 years; IQR, 47.5-61.0 years). After a median follow-up of 69.4 months (IQR, 54.4-86.3 months), median progression-free survival was 18.8 months (IQR, 13.0-43.2 months) in the control group and 19.8 months (IQR, 13.7-55.4 months) in the HIPEC group (P = .43), and median overall survival was 61.3 months (IQR, 34.3 months to not reported) in the control group and 69.5 months (IQR, 45.6 months to not reported) in the HIPEC group (P = .52). In the subgroup of interval cytoreductive surgery after neoadjuvant chemotherapy, the median progression-free survival was 15.4 months (IQR, 10.6-21.1 months) in the control group and 17.4 months (IQR, 13.8-31.5 months) in the HIPEC group (hazard ratio for disease progression or death, 0.60; 95% CI, 0.37-0.99; P = .04), and the median overall survival was 48.2 months (IQR, 33.8-61.3 months) in the control group and 61.8 months (IQR, 46.7 months to not reported) in the HIPEC group (hazard ratio, 0.53; 95% CI, 0.29-0.96; P = .04). In the subgroup of primary cytoreductive surgery, median progression-free survival was 29.7 (IQR, 17.2-90.1 months) in the control group and 23.9 months (IQR, 12.3-71.5 months) in the HIPEC group, and the median overall survival was not reached in the control group and 71.3 months (IQR, 45.6 months to not reported) in the HIPEC group. Conclusions and Relevance The addition of HIPEC to cytoreductive surgery did not improve progression-free and overall survival in patients with advanced epithelial ovarian cancer. Although the results are from a subgroup analysis, the addition of HIPEC to interval cytoreductive surgery provided an improvement of progression-free and overall survival. Trial Registration ClinicalTrials.gov Identifier: NCT01091636
Collapse
Affiliation(s)
- Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea.,Center for Clinical Trial, National Cancer Center, Goyang, South Korea.,Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, South Korea.,Department of Cancer Control and Policy, National Cancer Center, Goyang, South Korea
| | - Suk-Joon Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, South Korea
| | - Boram Park
- Biostatistics Collaboration Team, National Cancer Center, Goyang, South Korea.,Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Heon Jong Yoo
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea.,Chungnam National University School of Medicine, Dajeon, South Korea
| | - Chong Woo Yoo
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Byung Ho Nam
- Biostatistics Collaboration Team, National Cancer Center, Goyang, South Korea.,HERINGS, Seoul, South Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | | |
Collapse
|
14
|
Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022; 47:82. [PMID: 35211759 PMCID: PMC8908330 DOI: 10.3892/or.2022.8293] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapy drugs for ovarian cancer, but resistance is common. The initial response to platinum‑based chemotherapy is as high as 80%, but in most advanced patients, final relapse and death are caused by acquired drug resistance. The development of resistance to therapy in ovarian cancer is a significant hindrance to therapeutic efficacy. The resistance of ovarian cancer cells to chemotherapeutic mechanisms is rather complex and includes multidrug resistance, DNA damage repair, cell metabolism, oxidative stress, cell cycle regulation, cancer stem cells, immunity, apoptotic pathways, autophagy and abnormal signaling pathways. The present review provided an update of recent developments in our understanding of the mechanisms of ovarian cancer platinum‑based chemotherapy resistance, discussed current and emerging approaches for targeting these patients and presented challenges associated with these approaches, with a focus on development and overcoming resistance.
Collapse
Affiliation(s)
- Ling Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Jian Xie
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Ying-Ying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Xin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
16
|
Hsiao YW, Lu TP. Race-Specific Genetic Profiles of Homologous Recombination Deficiency in Multiple Cancers. J Pers Med 2021; 11:1287. [PMID: 34945758 PMCID: PMC8705317 DOI: 10.3390/jpm11121287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination deficiency (HRD) has been used to predict both cancer prognosis and the response to DNA-damaging therapies in many cancer types. HRD has diverse manifestations in different cancers and even in different populations. Many screening strategies have been designed for detecting the sensitivity of a patient's HRD status to targeted therapies. However, these approaches suffer from low sensitivity, and are not specific to each cancer type and population group. Therefore, identifying race-specific and targetable HRD-related genes is of clinical importance. Here, we conducted analyses using genomic sequencing data that was generated by the Pan-Cancer Atlas. Collapsing non-synonymous variants with functional damage to HRD-related genes, we analyzed the association between these genes and race within cancer types using the optimal sequencing kernel association test (SKAT-O). We have identified race-specific mutational patterns of curated HRD-related genes across cancers. Overall, more significant mutation sites were found in ATM, BRCA2, POLE, and TOP2B in both the 'White' and 'Asian' populations, whereas PTEN, EGFG, and RIF1 mutations were observed in both the 'White' and 'African American/Black' populations. Furthermore, supported by pathogenic tendency databases and previous reports, in the 'African American/Black' population, several associations, including BLM with breast invasive carcinoma, ERCC5 with ovarian serous cystadenocarcinoma, as well as PTEN with stomach adenocarcinoma, were newly described here. Although several HRD-related genes are common across cancers, many of them were found to be specific to race. Further studies, using a larger cohort of diverse populations, are necessary to identify HRD-related genes that are specific to race, for guiding gene testing methods.
Collapse
Affiliation(s)
- Yi-Wen Hsiao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan;
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan;
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
17
|
Development of New Cancer Treatment by Identifying and Focusing the Genetic Mutations or Altered Expression in Gynecologic Cancers. Genes (Basel) 2021; 12:genes12101593. [PMID: 34680987 PMCID: PMC8535522 DOI: 10.3390/genes12101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.
Collapse
|
18
|
Zheng H, Shu T, Zhu S, Zhang C, Gao M, Zhang N, Wang H, Yuan J, Tai Z, Xia X, Yi Y, Li J, Guan Y, Xiang Y, Gao Y. Construction and Validation of a Platinum Sensitivity Predictive Model With Multiple Genomic Variations for Epithelial Ovarian Cancer. Front Oncol 2021; 11:725264. [PMID: 34604063 PMCID: PMC8481766 DOI: 10.3389/fonc.2021.725264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Platinum-based chemotherapy is still the standard of care after cytoreductive surgery in the first-line treatment for epithelial ovarian cancer. This study aims to integrate novel biomarkers for predicting platinum sensitivity in EOC after initial cytoreductive surgery precisely. To this end, 60 patients were recruited from September 2014 to October 2019. Based on the duration of progress-free survival, 44 and 16 patients were assigned to platinum-sensitive and platinum-resistant group, respectively. Next generation sequencing was performed to dissect the genomic features of ovarian tumors obtained from surgery. Multiple genomic variations were compared between two groups, including single-nucleotide variant, single base or indel signature, loss of heterozygosity (LOH), whole-genome duplication (WGD), and others. The results demonstrated that patients with characteristics including positive SBS10a signature (p < 0.05), or FAM175A LOH (p < 0.01), or negative WGD (p < 0.01) were significantly enriched in platinum-sensitive group. Consistently, patients with positive SBS10a signature (15.8 vs. 10.1 months, p < 0.05), or FAM175A LOH (16.5 vs. 9.2 months, p < 0.05), or negative WGD (16.5 vs. 9.1 months, p < 0.05) have significantly longer PFS than those without these genetic features. By integrating these three biomarkers, a lasso regression model was employed to train and test for all patients, with the AUC value 0.864 in platinum sensitivity prediction. Notably, 388 ovarian cancer patients from TCGA dataset were leveraged as independent validation cohort with AUC value 0.808, suggesting the favorable performance and reliability of this model.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Shu
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Min Gao
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Zhang
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongguo Wang
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Yuan
- Geneplus-Shenzhen, Shenzhen, China
| | | | | | - Yuting Yi
- Geneplus-Beijing, Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jin Li
- Geneplus-Beijing, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing, Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunong Gao
- Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
19
|
Xing Z, Ma B, Sun W, Sun Y, Liu C. Comprehensive characterization and clinical relevance of the SWI/SNF copy number aberrations across human cancers. Hereditas 2021; 158:38. [PMID: 34598711 PMCID: PMC8487138 DOI: 10.1186/s41065-021-00203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background Alterations in genes encoding chromatin regulatory proteins are prevalent in cancers and may confer oncogenic properties and molecular changes linked to therapy resistance. However, the impact of copy number alterations (CNAs) of the SWItch/Sucrose NonFermentable (SWI/SNF) complex on the oncogenic and immunologic properties has not been systematically explored across human cancer types. Methods We comprehensively analyzed the genomic, transcriptomic and clinical data of The Cancer Genome Atlas (TCGA) dataset across 33 solid cancers. Results CNAs of the SWI/SNF components were identified in more than 25% of all queried cancers, and tumors harboring SWI/SNF CNAs demonstrated a worse overall survival (OS) than others in several cancer types. Mechanistically, the SCNA events in the SWI/SNF complex are correlated with dysregulated genomic features and oncogenic pathways, including the cell cycle, DNA damage and repair. Notably, the SWI/SNF CNAs were associated with homologous recombination deficiency (HRD) and improved clinical outcomes of platinum-treated ovarian cancer. Furthermore, we observed distinct immune infiltrating patterns and immunophenotypes associated with SWI/SNF CNAs in different cancer types. Conclusion The CNA events of the SWI/SNF components are a key process linked to oncogenesis, immune infiltration and therapeutic responsiveness across human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00203-y.
Collapse
Affiliation(s)
- Zhiwei Xing
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Buhuan Ma
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Weiting Sun
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Yimin Sun
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.,Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Caixia Liu
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
20
|
Talhouk A, George J, Wang C, Budden T, Tan TZ, Chiu DS, Kommoss S, Leong HS, Chen S, Intermaggio MP, Gilks B, Nazeran TM, Volchek M, Elatre W, Bentley RC, Senz J, Lum A, Chow V, Sudderuddin H, Mackenzie R, Leong SCY, Liu G, Johnson D, Chen B, Group A, Alsop J, Banerjee SN, Behrens S, Bodelon C, Brand AH, Brinton L, Carney ME, Chiew YE, Cushing-Haugen KL, Cybulski C, Ennis D, Fereday S, Fortner RT, García-Donas J, Gentry-Maharaj A, Glasspool R, Goranova T, Greene CS, Haluska P, Harris HR, Hendley J, Hernandez BY, Herpel E, Jimenez-Linan M, Karpinskyj C, Kaufmann SH, Keeney GL, Kennedy CJ, Köbel M, Koziak JM, Larson MC, Lester J, Lewsley LA, Lissowska J, Lubiński J, Luk H, Macintyre G, Mahner S, McNeish IA, Menkiszak J, Nevins N, Osorio A, Oszurek O, Palacios J, Hinsley S, Pearce CL, Pike MC, Piskorz AM, Ray-Coquard I, Rhenius V, Rodriguez-Antona C, Sharma R, Sherman ME, De Silva D, Singh N, Sinn P, Slamon D, Song H, Steed H, Stronach EA, Thompson PJ, Tołoczko A, Trabert B, Traficante N, Tseng CC, Widschwendter M, Wilkens LR, Winham SJ, Winterhoff B, Beeghly-Fadiel A, Benitez J, Berchuck A, Brenton JD, Brown R, Chang-Claude J, Chenevix-Trench G, deFazio A, Fasching PA, García MJ, Gayther SA, Goodman MT, Gronwald J, Henderson MJ, Karlan BY, Kelemen LE, Menon U, Orsulic S, Pharoah PDP, Wentzensen N, Wu AH, Schildkraut JM, Rossing MA, Konecny GE, Huntsman DG, Huang RYJ, Goode EL, Ramus SJ, Doherty JA, Bowtell DD, Anglesio MS. Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clin Cancer Res 2020; 26:5411-5423. [PMID: 32554541 PMCID: PMC7572656 DOI: 10.1158/1078-0432.ccr-20-0103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.
Collapse
Affiliation(s)
- Aline Talhouk
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, British Columbia, Canada
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Chen Wang
- Mayo Clinic, Division of Biomedical Statistics and Informatics, Department of Health Science Research, Rochester, Minnesota
| | - Timothy Budden
- University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia
- The University of Manchester, CRUK Manchester Institute, Manchester, United Kingdom
| | - Tuan Zea Tan
- National University of Singapore, Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Derek S Chiu
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Kommoss
- Tuebingen University Hospital, Department of Women's Health, Tuebingen, Germany
| | - Huei San Leong
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Stephanie Chen
- Cedars-Sinai Medical Center, Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Maria P Intermaggio
- University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia
| | - Blake Gilks
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tayyebeh M Nazeran
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Mila Volchek
- Royal Women's Hospital, Anatomical Pathology, Parkville, Victoria, Australia
| | - Wafaa Elatre
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rex C Bentley
- Department of Pathology, Duke University Hospital, Durham, North Carolina
| | - Janine Senz
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Lum
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronica Chow
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanwei Sudderuddin
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Robertson Mackenzie
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel C Y Leong
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Geyi Liu
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Dustin Johnson
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Billy Chen
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
| | - Aocs Group
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Susana N Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Gynaecology Unit, London, United Kingdom
| | - Sabine Behrens
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Clara Bodelon
- NCI, Division of Cancer Epidemiology and Genetics, Bethesda, Maryland
| | - Alison H Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Louise Brinton
- NCI, Division of Cancer Epidemiology and Genetics, Bethesda, Maryland
| | - Michael E Carney
- Department of Obstetrics and Gynecology, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Yoke-Eng Chiew
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Kara L Cushing-Haugen
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, Washington
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Darren Ennis
- Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sian Fereday
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Renée T Fortner
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jesús García-Donas
- HM Hospitales Centro Integral Oncológico Clara Campal (HM CIOCC), Madrid, Spain
| | - Aleksandra Gentry-Maharaj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Rosalind Glasspool
- Department of Medical Oncology, Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Teodora Goranova
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Haluska
- Mayo Clinic, Department of Oncology, Rochester, Minnesota
| | - Holly R Harris
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Joy Hendley
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Brenda Y Hernandez
- University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, Hawaii
| | - Esther Herpel
- Institute of Pathology and NCT Tissue Bank, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Chloe Karpinskyj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Scott H Kaufmann
- Mayo Clinic, Department of Oncology, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Gary L Keeney
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Alberta, Canada
| | | | - Melissa C Larson
- Mayo Clinic, Division of Biomedical Statistics and Informatics, Department of Health Science Research, Rochester, Minnesota
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Liz-Anne Lewsley
- Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jolanta Lissowska
- M Sklodowska Curie National Research Institute of Oncology, Department of Cancer Epidemiology and Prevention, Warsaw, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Hugh Luk
- University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, Hawaii
| | - Geoff Macintyre
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Iain A McNeish
- Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Nikilyn Nevins
- Department of Gynaecological Oncology, Westmead Hospital and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Ana Osorio
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Oleg Oszurek
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - José Palacios
- Hospital Universitario Ramón y Cajal, Pathology Department. IRYCIS. CIBERONC. Universidad de Alcalá, Madrid, Spain
| | - Samantha Hinsley
- Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celeste L Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Malcolm C Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Rodriguez-Antona
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Raghwa Sharma
- Pathology West ICPMR Westmead, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia
- University of Western Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Dilrini De Silva
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Naveena Singh
- Department of Pathology, Barts Health National Health Service Trust, London, United Kingdom
| | - Peter Sinn
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dennis Slamon
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Honglin Song
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Euan A Stronach
- Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, London, United Kingdom
| | - Pamela J Thompson
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, California
| | - Aleksandra Tołoczko
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Britton Trabert
- NCI, Division of Cancer Epidemiology and Genetics, Bethesda, Maryland
| | - Nadia Traficante
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, London, United Kingdom
| | - Lynne R Wilkens
- University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, Hawaii
| | - Stacey J Winham
- Mayo Clinic, Division of Biomedical Statistics and Informatics, Department of Health Science Research, Rochester, Minnesota
| | - Boris Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, North Carolina
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Robert Brown
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Queensland, Australia
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Peter A Fasching
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - María J García
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Simon A Gayther
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Los Angeles, California
| | - Marc T Goodman
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, California
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Linda E Kelemen
- Hollings Cancer Center and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mary Anne Rossing
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Gottfried E Konecny
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - David G Huntsman
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ruby Yun-Ju Huang
- National University of Singapore, Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- National Taiwan University, School of Medicine, College of Medicine, Taipei City, Taiwan
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, Minnesota.
| | - Susan J Ramus
- University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, Sydney, New South Wales, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - David D Bowtell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael S Anglesio
- British Columbia's Gynecological Cancer Research Program (OVCARE), BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, British Columbia, Canada.
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Gou R, Dong H, Lin B. Application and reflection of genomic scar assays in evaluating the efficacy of platinum salts and PARP inhibitors in cancer therapy. Life Sci 2020; 261:118434. [PMID: 32941897 DOI: 10.1016/j.lfs.2020.118434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Defective DNA repair is one of the most important features of tumors. BRCA1/2 participates in homologous recombination repair as a key tumor suppressor gene. BRCA1/2 mutation is an important biomarker for predicting the sensitivity of platinum salts and Poly (ADP-ribose) polymerase (PARP) inhibitors in breast cancer, ovarian cancer, and other cancers. However, epigenetic modifications and other mutations in homologous recombination repair (HRR) genes can also cause homologous recombination deficiency (HRD). Patients with no BRCA1/2 mutations, but bearing similar molecular phenotypes (BRCAness) can still obtain clinical benefits from treatment with platinum salts or PARP inhibitors. Therefore, an accurate assessment of HRD is essential for the formulation of personalized treatments. However, methods to identify HRD in tumors vary and are controversial. Currently, genomic scar assays have been used in multiple clinical trials to assess patient clinical benefit. This review summarizes the therapeutic effects of platinum salts and PARP inhibitors in breast and ovarian cancer, clarifies the predictive value of genomic scar assays in evaluating the clinical benefit of different patient groups and treatment options, and proposes the limitations and optimization of current HRD scoring methods. Using and optimizing genomic scar assays can help to accurately screen the population with the most benefit, expand the scope of drug application, and make the most suitable clinical decision based on individual differences.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
22
|
Le Page C, Rahimi K, Rodrigues M, Heinzelmann-Schwarz V, Recio N, Tommasi S, Bataillon G, Portelance L, Golmard L, Meunier L, Tonin PN, Gotlieb W, Yasmeen A, Ray-Coquard I, Labidi-Galy SI, Provencher D, Mes-Masson AM. Clinicopathological features of women with epithelial ovarian cancer and double heterozygosity for BRCA1 and BRCA2: A systematic review and case report analysis. Gynecol Oncol 2019; 156:377-386. [PMID: 31753525 DOI: 10.1016/j.ygyno.2019.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carriers of pathogenic variants in both BRCA1 and BRCA2 genes as a double mutation (BRCA1/2 DM) have been rarely reported in women with epithelial ovarian cancer (EOC). METHODS We reviewed the English literature and interrogated three repositories reporting EOC patients carrying BRCA1/2 DM. The clinicopathological parameters of 36 EOC patients carrying germline BRCA1/2 DM were compared to high-grade serous EOC women of the COEUR cohort with known germline BRCA1/BRCA2 mutation carrier status (n = 376 non-carriers, n = 65 BRCA1 and n = 38 BRCA2). Clinicopathological parameters evaluated were age at diagnosis, stage of disease, loss of heterozygosity, type of mutation, immunohistochemistry profile, progression occurrence and survival. RESULTS Median age at diagnosis of BRCA1/2 DM patients was 51.9 years, similar to BRCA1 mutation carriers (49.7 years, p = .58) and younger than BRCA2 mutation carriers (58.1 years, p = .02). Most patients were diagnosed at advanced stage (III-IV; 82%) and were carriers of founder/frequent mutations (69%). Tissue immunostainings revealed no progesterone receptor expression and low intraepithelial inflammation. The 5-year survival rate (60%) was significantly lower than that of BRCA2 mutation carriers (76%, p = .03) but not of BRCA1 mutation carriers (51%, p = .37). CONCLUSIONS Our data suggests some co-dominant effect of both mutations but the outcome of these patients more closely resembled that of BRCA1 mutation carriers with poor prognosis factors.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada.
| | - Kurosh Rahimi
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Department of Pathology, Centre hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Manuel Rodrigues
- Institut Curie, PSL Research University, Paris, France; Department of Medical Oncology, INSERM U830 "Cancer, heterogeneity, instability and plasticity", Paris, France
| | - Viola Heinzelmann-Schwarz
- Gynecological Cancer Centre and Ovarian Cancer Research Group, University Hospital Basel and Department of Biomedicine, Basel, Switzerland
| | - Neil Recio
- Departments of Human Genetics, McGill University; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Guillaume Bataillon
- Institut Curie, PSL Research University, Paris, France; Department of Biopathology, Paris, France
| | - Lise Portelance
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Lisa Golmard
- Institut Curie, PSL Research University, Paris, France; Department of Genetics, Paris, France
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Human Genetics, McGill University; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | - Walter Gotlieb
- Segal Cancer Center, Lady Davis Institute of Medical research, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Center, Lady Davis Institute of Medical research, McGill University, Montreal, QC, Canada
| | | | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève and Department of Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Division of Gynecology-Oncology, CHUM, QC, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|