1
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Zhang Z, Stolrow HG, Christensen BC, Salas LA. Down Syndrome Altered Cell Composition in Blood, Brain, and Buccal Swab Samples Profiled by DNA-Methylation-Based Cell-Type Deconvolution. Cells 2023; 12:1168. [PMID: 37190077 PMCID: PMC10136493 DOI: 10.3390/cells12081168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21 that presents developmental dysfunction and intellectual disability. To better understand the cellular changes associated with DS, we investigated the cell composition in blood, brain, and buccal swab samples from DS patients and controls using DNA methylation-based cell-type deconvolution. We used genome-scale DNA methylation data from Illumina HumanMethylation450k and HumanMethylationEPIC arrays to profile cell composition and trace fetal lineage cells in blood samples (DS N = 46; control N = 1469), brain samples from various regions (DS N = 71; control N = 101), and buccal swab samples (DS N = 10; control N = 10). In early development, the number of cells from the fetal lineage in the blood is drastically lower in DS patients (Δ = 17.5%), indicating an epigenetically dysregulated maturation process for DS patients. Across sample types, we observed significant alterations in relative cell-type proportions for DS subjects compared with the controls. Cell-type proportion alterations were present in samples from early development and adulthood. Our findings provide insight into DS cellular biology and suggest potential cellular interventional targets for DS.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
| | - Hannah G. Stolrow
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
3
|
Fornalski KW, Adamowski Ł, Bugała E, Jarmakiewicz R, Kirejczyk M, Kopyciński J, Krasowska J, Kukulski P, Piotrowski Ł, Ponikowska J, Reszczyńska J, Słonecka I, Wysocki P, Dobrzyński L. Biophysical Modeling of the Ionizing Radiation Influence on Cells Using the Stochastic (Monte Carlo) and Deterministic (Analytical) Approaches. Dose Response 2022; 20:15593258221138506. [PMID: 36458282 PMCID: PMC9706082 DOI: 10.1177/15593258221138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect. The model is also modifiable depending on users' potential needs.
Collapse
Affiliation(s)
- Krzysztof W. Fornalski
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
- National Centre for Nuclear
Research (NCBJ), Poland
| | | | - Ernest Bugała
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | | | | - Jakub Kopyciński
- Center for Theoretical
Physics, Polish Academy of Sciences (CFT
PAN), Poland
| | | | - Piotr Kukulski
- Department of Mechanical, Aerospace
and Civil Engineering, University of Manchester (MACE
UoM), United Kingdom
| | | | - Julia Ponikowska
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Joanna Reszczyńska
- Mossakowski Medical Research
Institute,
Polish Academy
of Sciences (IMDiK PAN), Poland
| | - Iwona Słonecka
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Paweł Wysocki
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | |
Collapse
|
4
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
5
|
Wiencke JK, Zhang Z, Koestler DC, Salas LA, Molinaro AM, Christensen BC, Kelsey KT. Identification of a foetal epigenetic compartment in adult human kidney. Epigenetics 2021; 17:335-355. [PMID: 33783321 DOI: 10.1080/15592294.2021.1900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The mammalian kidney has extensive repair capacity; however, identifying adult renal stem cells has proven elusive. We applied an epigenetic marker of foetal cell origin (FCO) in diverse human tissues as a probe for developmental cell persistence, finding a 5.4-fold greater FCO proportion in kidney. Normal kidney FCO proportions averaged 49% with extensive interindividual variation. FCO proportions were significantly negatively correlated with immune-related gene expression and positively correlated with genes expressed in the renal medulla, including those involved in renal organogenesis (e.g., FGF2, PAX8, and HOXB7). FCO associated genes also mapped to medullary nephron segments in mouse and rat, suggesting evolutionary conservation of this cellular compartment. Renal cancer patients whose tumours contained non-zero FCO scores survived longer. The kidney appears unique in possessing substantial foetal epigenetic features. Further study of FCO-related gene methylation may elucidate regenerative regulatory programmes in tissues without apparent discrete stem cell compartments.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ze Zhang
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lucas A Salas
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Department of Molecular and Systems Biology, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
6
|
Zou Y, Sun H, Guo Y, Shi Y, Jiang Z, Huang J, Li L, Jiang F, Lin Z, Wu J, Zhou R, Liu Y, Ao L. Integrative Pan-Cancer Analysis Reveals Decreased Melatonergic Gene Expression in Carcinogenesis and RORA as a Prognostic Marker for Hepatocellular Carcinoma. Front Oncol 2021; 11:643983. [PMID: 33842355 PMCID: PMC8029983 DOI: 10.3389/fonc.2021.643983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin has been shown to play a protective role in the development and progression of cancer. However, the relationship between alterations in the melatonergic microenvironment and cancer development has remained unclear. Methods We performed a comprehensive investigation on 12 melatonergic genes and their relevance to cancer occurrence, progression and survival by integrating multi-omics data from microarray analysis and RNA sequencing across 11 cancer types. Specifically, the 12 melatonergic genes that we investigated, which reflect the melatonergic microenvironment, included three membrane receptor genes, three nuclear receptor genes, two intracellular receptor genes, one synthetic gene, and three metabolic genes. Results Widely coherent underexpression of nuclear receptor genes, intracellular receptor genes, and metabolic genes was observed in cancerous samples from multiple cancer types compared to that in normal samples. Furthermore, genomic and/or epigenetic alterations partially contributed to these abnormal expression patterns in cancerous samples. Moreover, the majority of melatonergic genes had significant prognostic effects in predicting overall survival. Nevertheless, few corresponding alterations in expression were observed during cancer progression, and alterations in expression patterns varied greatly across cancer types. However, the association of melatonergic genes with one specific cancer type, hepatocellular carcinoma, identified RORA as a tumor suppressor and a prognostic marker for patients with hepatocellular carcinoma. Conclusions Overall, our study revealed decreased melatonergic gene expression in various cancers, which may help to better elucidate the relationship between melatonin and cancer development. Taken together, our findings highlight the potential prognostic significance of melatonergic genes in various cancers.
Collapse
Affiliation(s)
- Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaqin Sun
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jingxuan Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruixiang Zhou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuncai Liu
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|