1
|
Zhao N, Ni C, Fan S, Che N, Li Y, Wang S, Li Y, Dong X, Guo Y, Zhao X, Liu T. RSRC2 Expression Inhibits Malignant Progression of Triple-Negative Breast Cancer by Transcriptionally Regulating SCIN Expression. Cancers (Basel) 2023; 16:15. [PMID: 38201443 PMCID: PMC10778392 DOI: 10.3390/cancers16010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has a shorter survival time and higher mortality rate than other molecular subtypes. RSRC2 is a newly discovered tumor suppressor gene. However, the potential functional mechanism of RSRC2 in TNBC remains unknown so far. Multiple bioinformatics databases were used. A Human Transcriptome Array 2.0 analysis, ChIP-seq analysis, ChIP-qPCR, RT-qPCR, Western blot, cell function assays in vitro and a metastatic mouse model in vivo were performed to demonstrate the role of RSRC2 in TNBC. Through the analysis of various databases, RSRC2 expression was the lowest in TNBC tissues compared to other molecular subtypes. The low expression of RSRC2 was associated with a worse prognosis for patients with breast cancer. The transcriptome array, ChIP-seq and bioinformatics analysis identified that GRHL2 and SCIN might have a close relationship with RSRC2. The functional bioinformatics enrichment analysis and functional cell experiments showed that RSRC2 was involved in cell adhesion, cell proliferation, cell migration and invasion. Furthermore, RSRC2 expression suppressed SCIN expression but not GRHL2 expression. SCIN re-expression in the RSRC2 overexpression cells or SCIN knockdown in the RSRC2 knockdown cells reversed the cellular function caused by RSRC2. Mechanistically, RSRC2 transcriptionally inhibited SCIN expression. In summary, our study reveals that RSRC2 acts as a tumor suppressor in TNBC development and progression through negatively regulating SCIN-mediated cell function, thus providing a potential target for TNBC treatment.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Shuai Fan
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Song Wang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yongli Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
2
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zhu Z, Wang J, Fan X, Long Q, Chen H, Ye Y, Zhang K, Ren Z, Zhang Y, Niu Q, Chen D, Guo R. CircRNA-regulated immune responses of asian honey bee workers to microsporidian infection. Front Genet 2022; 13:1013239. [PMID: 36267412 PMCID: PMC9577369 DOI: 10.3389/fgene.2022.1013239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Nosema ceranae is a widespread fungal parasite for honey bees, causing bee nosemosis. Based on deep sequencing and bioinformatics, identification of circular RNAs (circRNAs) in Apis cerana workers' midguts and circRNA-regulated immune response of host to N. ceranae invasion were conducted in this current work, followed by molecular verification of back-splicing sites and expression trends of circRNAs. Here, 10185 and 7405 circRNAs were identified in the midguts of workers at 7 days (AcT1) and 10 days (AcT2) post inoculation days post-inoculation with N. ceranae. PCR amplification result verified the back-splicing sites within three specific circRNAs (novel_circ_005123, novel_circ_007177, and novel_circ_015140) expressed in N. ceranae-inoculated midgut. In combination with transcriptome data from corresponding un-inoculated midguts (AcCK1 and AcCK2), 2266 circRNAs were found to be shared by the aforementioned four groups, whereas the numbers of specific ones were 2618, 1917, 5691, and 3723 respectively. Further, 83 52) differentially expressed circRNAs (DEcircRNAs) were identified in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group. Source genes of DEcircRNAs in workers' midgut at seven dpi were involved in two cellular immune-related pathways such as endocytosis and ubiquitin mediated proteolysis. Additionally, competing endogenous RNA (ceRNA) network analysis showed that 23 13) DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group could target 18 14) miRNAs and further link to 1111 (1093) mRNAs. These target mRNAs were annotated to six cellular immunity pathways including endocytosis, lysosome, phagosome, ubiquitin mediated proteolysis, metabolism of xenobiotics by cytochrome P450, and insect hormone biosynthesis. Moreover, 284 164) internal ribosome entry site and 54 26) ORFs were identified from DEcircRNAs in AcCK1 vs. AcT1 (AcCK2 vs. AcT2) comparison group; additionally, ORFs in DEcircRNAs in midgut at seven dpi with N. ceranae were associated with several cellular immune pathways including endocytosis and ubiquitin-mediated proteolysis. Ultimately, RT-qPCR results showed that the expression trends of six DEcircRNAs were consistent with those in transcriptome data. These results demonstrated that N. ceranae altered the expression pattern of circRNAs in A. c. cerana workers' midguts, and DEcircRNAs were likely to regulate host cellular and humoral immune response to microsporidian infection. Our findings lay a foundation for clarifying the mechanism underlying host immune response to N. ceranae infection and provide a new insight into interaction between Asian honey bee and microsporidian.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongmin Ren
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsheng Niu
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Apiculture Science Institute of Jilin Province, Jilin, China
| |
Collapse
|
4
|
Guo Z, Liu X, Shao H. E2F4-induced AGAP2-AS1 up-regulation accelerates the progression of colorectal cancer via miR-182-5p/CFL1 axis. Dig Liver Dis 2022; 54:878-889. [PMID: 34838479 DOI: 10.1016/j.dld.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of numerous diseases including cancers. LncRNA AGAP2 Antisense RNA 1 (AGAP2-AS1) has been found to participate in the tumorigenesis of several kinds of human cancers. Nonetheless, its potential function in colorectal cancer (CRC) was still poorly investigated. METHODS The expression level of RNAs or proteins was assessed by RT-qPCR or western blot analysis. Functional experiments were performed to analyze the role of AGAP2-AS1 in CRC in vitro and in vivo. Mechanism investigations were fulfilled to determine the potential mechanism of the molecules. RESULTS AGAP2-AS1 expression was significantly elevated in CRC cells and could be transcriptionally activated by E2F Transcription Factor 4 (E2F4). Down-regulated AGAP2-AS1 could weaken CRC cell growth, migration, invasion, and epithelial-mesenchymal transition (EMT). MicroRNA-182-5p (miR-182-5p) was the target downstream molecule of AGAP2-AS1. Furthermore, Cofilin 1 (CFL1) was proved as the target of miR-182-5p. Mechanically, AGAP2-AS1 could boost the CFL1 expression via competitively binding to miR-182-5p in CRC. Importantly, CFL1 restoration could counteract the in vitro and in vivo suppression of depleted AGAP2-AS1 on CRC progression. CONCLUSION E2F4-stimulated AGAP2-AS1 aggravated CRC development through regulating miR-182-5p/CFL1 axis, implying that AGAP2-AS1 might become a potent new target for future therapies for CRC.
Collapse
Affiliation(s)
- Zhen Guo
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuezhong Liu
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hongjin Shao
- Anorectal Department, Liaocheng People's Hospital, NO.67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
5
|
Hsa-miR-181a-5p, hsa-miR-182-5p, and hsa-miR-26a-5p as potential biomarkers for BCR-ABL1 among adult chronic myeloid leukemia treated with tyrosine kinase inhibitors at the molecular response. BMC Cancer 2022; 22:332. [PMID: 35346116 PMCID: PMC8962036 DOI: 10.1186/s12885-022-09396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) as first-line therapy for Chronic Myeloid Leukemia (CML) show a high success rate. However, a low number of patients with long-term treatment-free remission (TFR) were observed. Molecular relapse after imatinib discontinuation occurred at 50% at 24 months, with 80% occurrence within the first 6 months. One of the reasons for relapse is untimely TKIs discontinuation caused by large errors from estimates at very low-level or undetectable disease, thus warranting new biomarkers for CML. METHODS Next Generation Sequencing (NGS) was used to identify microRNAs (miRNAs) at the molecular response in CML adult patients receiving TKIs treatment. A total of 86 samples were collected, 30 from CML patients responsive and 28 from non-responsive to imatinib therapy, and 28 from blood donors. NGS was conducted whereby 18 miRNAs were selected and validated by real-time RT-qPCR in triplicate. RESULTS Hsa-miR-181a-5p was expressed significantly (p-value< 0.05) with 2.14 and 2.33-fold down-regulation in both patient groups, respectively meanwhile hsa-miR-182-5p and hsa-miR-26a-5p were significant only in the non-responsive group with 2.08 and 2.39 fold up-regulation. The down-regulation was consistent with decreased amounts of BCR-ABL1 in patients taking TKIs regardless of molecular responses. The up-regulation was consistent with the substantial presence of BCR-ABL1 in CML patients treated with TKIs at the molecular response. CONCLUSIONS Therefore, these miRNAs have potential as new therapeutic biomarkers for BCR-ABL1 status in adult CML patients treated with TKIs at molecular responses. These could improve current approaches and require further analysis to look for targets of these miRNAs in CML.
Collapse
|
6
|
Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia. BIOLOGY 2021; 10:biology10111182. [PMID: 34827175 PMCID: PMC8615070 DOI: 10.3390/biology10111182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Chronic myeloid leukemia is a type of blood cancer that is regarded as a success story in determining the exact biological origin, pathogenesis and development of a molecularly targeted (mutation-specific) therapy that has led to successful treatment of this fatal cancer. It is caused by the BCR-ABL fusion gene, which is formed from the translocation between chromosomes 9 and 22. Anti-BCR-ABL drugs, known as tyrosine kinase inhibitors (TKIs), have led to long-term remissions in more than 80% of CML patients and even cure in about one-third of patients. Nevertheless, many patients face drug resistance, and disease progression occurs in about 30% of CML patients, leading to morbidities and mortality. Unfortunately, no biomarkers of CML progression are available due to a poor understanding of the mechanism of progression. Therefore, finding reliable molecular biomarkers of CML progression is one of the most attractive research areas in 21st-century cancer research. In this study, we report novel genomic variants exclusively found in all our advanced-phase CML patients. This study will help in identifying CML patients at risk of disease progression and timely therapeutic interventions to avoid or at least delay fatal disease progression in this cancer. Abstract Background: Chronic myeloid leukemia (CML) is initiated in bone marrow due to chromosomal translocation t(9;22) leading to fusion oncogene BCR-ABL. Targeting BCR-ABL by tyrosine kinase inhibitors (TKIs) has changed fatal CML into an almost curable disease. Despite that, TKIs lose their effectiveness due to disease progression. Unfortunately, the mechanism of CML progression is poorly understood and common biomarkers for CML progression are unavailable. This study was conducted to find novel biomarkers of CML progression by employing whole-exome sequencing (WES). Materials and Methods: WES of accelerated phase (AP) and blast crisis (BC) CML patients was carried out, with chronic-phase CML (CP-CML) patients as control. After DNA library preparation and exome enrichment, clustering and sequencing were carried out using Illumina platforms. Statistical analysis was carried out using SAS/STAT software version 9.4, and R package was employed to find mutations shared exclusively by all AP-/BC-CML patients. Confirmation of mutations was carried out using Sanger sequencing and protein structure modeling using I-TASSER followed by mutant generation and visualization using PyMOL. Results: Three novel genes (ANKRD36, ANKRD36B and PRSS3) were mutated exclusively in all AP-/BC-CML patients. Only ANKRD36 gene mutations (c.1183_1184 delGC and c.1187_1185 dupTT) were confirmed by Sanger sequencing. Protein modeling studies showed that mutations induce structural changes in ANKRD36 protein. Conclusions: Our studies show that ANKRD36 is a potential common biomarker and drug target of early CML progression. ANKRD36 is yet uncharacterized in humans. It has the highest expression in bone marrow, specifically myeloid cells. We recommend carrying out further studies to explore the role of ANKRD36 in the biology and progression of CML.
Collapse
|
7
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
8
|
Li F, Zhou YD, Liu J, Cai JD, Liao ZM, Chen GQ. RBP-J promotes cell growth and metastasis through regulating miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis in colorectal cancer. Cell Signal 2021; 87:110103. [PMID: 34339855 DOI: 10.1016/j.cellsig.2021.110103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND RBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC. METHODS The expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity. RESULTS Our results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice. CONCLUSION RBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Ya-Dong Zhou
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao Liu
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao-Di Cai
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Zhi-Ming Liao
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Guo-Qun Chen
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China.
| |
Collapse
|
9
|
Soliman SE, Elabd NS, El-Kousy SM, Awad MF. Down regulation of miR-30a-5p and miR-182-5p in gastric cancer: Clinical impact and survival analysis. Biochem Biophys Rep 2021; 27:101079. [PMID: 34355069 PMCID: PMC8321916 DOI: 10.1016/j.bbrep.2021.101079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
Background and aim Gastric Cancer (GC) is a leading cause of morbidity and mortality worldwide, particularly in developing nations, only a few suitable gastric cancer serum biomarkers with acceptable sensitivity and specificity exist. This work aims to highlight and uncover miR-30a-5p and miR-182-5p's diagnostic roles regarding gastric cancer and their roles in predicting prognosis. Methods 148 patients participated in this study. Groups I, II, and III had 47 patients with GC, 54 patients with benign gastric lesions, and 47 apparently healthy subjects of coincided age and gender as controls, respectively. All participants were clinically evaluated and subjected to CBC, serum CEA, and CA19-9 by ELISA, and real-time PCR tests of miR-30a-5p and miR-182-5p. Results MiR30a-5p and miR-182-5p were down regulated in gastric cancer patients in Group I more than Groups II and III (P < 0.001). ROC curve analysis revealed that miR30a-5p had better AUC, sensitivity, and specificity (0.961%, 93.62%, and 90.74%respectively). When miR-182-5p was gathered with CEA and CA19-9, specificity raised to 98.15% and PPV to 97.6%. Lower miR-30a-5p levels are linked with the presence of distant metastases, advanced TNM stage, and degree of pathological differentiation of tumors in GC patients (p = 0.034, 0.019, 0.049) respectively. According to the multivariate analysis, miR30a-5p expression level could be an independent predictor of GC. Conclusion Our results exhibited that miRNAs, miR-30a-5p and miR182-5p, gene expression have a diagnostic power and can identify patients with GC. MiR-30a-5p displayed the highest diagnostic specificity and sensitivity. Besides other known tumor markers, they could offer simple noninvasive biomarkers that predict gastric cancer.
Collapse
Affiliation(s)
- Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Naglaa S Elabd
- Tropical Medicine Department, Faculty of Medicine - Menoufia University, Egypt
| | - Salah M El-Kousy
- Department of Organic Chemistry, Faculty of Science - Menoufia University, Egypt
| | - Mohamed F Awad
- Chemist at Faculty of Science - Menoufia University, Egypt Organic Chemistry, Egypt
| |
Collapse
|
10
|
Yaghoubi N, Zahedi Avval F, Khazaei M, Aghaee-Bakhtiari SH. MicroRNAs as potential investigative and predictive biomarkers in colorectal cancer. Cell Signal 2020; 80:109910. [PMID: 33387618 DOI: 10.1016/j.cellsig.2020.109910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a noticeable reason of cancer-associated deaths with a high incidence and mortality rate. Countless effort have been put into the improving clinical management of CRC patients including more effective tools and a wide variety of biomarkers for diagnostic, prognostic or predictive purposes. In recent years, dysregulated miRNAs have been emerged as highly sensitive and specific markers to manage CRC in an effective way. They can play key roles in carcinogenesis as potential oncogenes, tumor suppressors or regulators of cancer network. Therefore, miRNAs may serve as molecular tools that can be quantified and used in diagnostic and prognostic approaches. Growing evidence also suggests that forced expression of tumor suppressor miRNAs or inhibiting the oncogene ones, can be used as a novel treatment strategy. In this review, we focus on the clinical applications of miRNAs as promising biomarkers of early cancer detection, prognosis and treatment.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Chung Y, Kim H, Bang S, Jang K, Paik SS, Shin SJ. Nuclear Expression Loss of SSBP2 Is Associated with Poor Prognostic Factors in Colorectal Adenocarcinoma. Diagnostics (Basel) 2020; 10:E1097. [PMID: 33339271 PMCID: PMC7766200 DOI: 10.3390/diagnostics10121097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is involved in DNA damage response and may induce growth arrest in cancer cells, having a potent tumor suppressor role. SSBP2 is ubiquitously expressed and the loss of its expression has been reported in various tumor types. However, the correlation between SSBP2 expression and colorectal cancer (CRC) prognosis remains unclear. SSBP2 nuclear expression was evaluated immunohistochemically in 48 normal colonic mucosae, 47 adenomas, 391 primary adenocarcinomas, and 131 metastatic carcinoma tissue samples. The clinicopathological factors, overall survival (OS), and recurrence-free survival were evaluated, and associations with the clinicopathological parameters were analyzed in 391 colorectal adenocarcinoma patients. A diffuse nuclear SSBP2 expression was detected in all normal colonic mucosa and adenoma samples. SSBP2 expression loss was observed in 131 (34.3%) primary adenocarcinoma and 100 (76.3%) metastatic carcinoma samples. SSBP2 expression was significantly associated with poor prognostic factors, such as vascular invasion (p = 0.005), high pT category (p = 0.045), and shorter OS (p = 0.038), using univariate survival analysis. Nuclear SSBP2 expression loss was significantly observed in colorectal carcinoma and metastatic carcinoma tissues, being associated with poor prognostic factors. SSBP2 acts as a tumor suppressor and may be used as a CRC prognostic biomarker.
Collapse
Affiliation(s)
- Yumin Chung
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Korea;
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (H.K.); (S.B.); (K.J.)
| | - Seongsik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (H.K.); (S.B.); (K.J.)
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (H.K.); (S.B.); (K.J.)
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (H.K.); (S.B.); (K.J.)
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| |
Collapse
|
12
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Bajaj R, Tripathi R, Sridhar TS, Korlimarla A, Choudhury KD, Suryavanshi M, Mehta A, Doval DC. Prognostic role of microRNA 182 and microRNA 18a in locally advanced triple negative breast cancer. PLoS One 2020; 15:e0242190. [PMID: 33175907 PMCID: PMC7657558 DOI: 10.1371/journal.pone.0242190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/28/2020] [Indexed: 01/22/2023] Open
Abstract
Background The study assessed the epigenetic regulation and the role of microRNA (miR) expression in locally advanced triple negative breast cancers (TNBC) and comparison with the clinico-pathological variables and survival. Methods Fifty patients of locally advanced TNBC during the period 2011–2013 were included. Expression level of test microRNA (miR-182 and miR-18a) was determined using Taqman quantitative Real time polymerase chain reaction (qRT-PCR) from formalin fixed paraffin embedded biopsy blocks. Clinical and demographic information and survival data was retrieved from the Hospital medical records. Results An improved clinical complete response (cCR) was observed in patients with age ≥ 45 years (80%), premenopausal status (70%), tumor size < 6 cms (80%), nodal status N0-N1 (95%) and grade II-III tumor (80%). A statistically significant correlation was observed on comparison of cCR with menopausal status (p-value 0.020), T category (p-value 0.018) and the clinical nodal status (p-value 0.003). pCR also correlated with clinical nodal status (p-value 0.008). Epigenetically, miR-18a under expression (< 8.84) was most commonly associated with tumor size < 6 cms (76.7%), clinical nodal status N0-N1 (90%), cCR (60%) and pCR (53.3%). A similar trend was observed with miR-182. Statistical significance was observed with T category (p-values 0.003 and 0.004), clinical nodal status (p-values 0.001 and 0.001), clinical response (p-values 0.002 and 0.002) and pathological response (p-values 0.007 and 0.006) with respect to miR-18a and miR-182, respectively. Also, the menopausal status significantly correlated with the miR-182 expression (p-value 0.009). miR-182 overexpression (≥ 6.32) was not observed in any of the postmenopausal patients. A univariate cox proportional hazard regression model also showed statistical interactions (p-values <0.004). Conclusion miR-182 and miR-18a overexpression correlates with worse clinical and pathological tumor characteristics in locally advanced TNBC and hence could be used to predict the outcomes and prognosis in these patients.
Collapse
Affiliation(s)
- Rajat Bajaj
- Department of Medical Oncology, International Oncology Services, Fortis Hospital, UP, India
| | - Rupal Tripathi
- Department of Research, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - T. S. Sridhar
- Department of Molecular Medicine, St John’s Research Institute, Karnataka, India
| | - Aruna Korlimarla
- Department of Molecular Medicine, St John’s Research Institute, Karnataka, India
| | | | - Moushumi Suryavanshi
- Department of Molecular Diagnostics and Cell Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Anurag Mehta
- Department of Pathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Dinesh Chandra Doval
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
- * E-mail:
| |
Collapse
|
14
|
Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 2020; 124:76-90. [PMID: 33144696 PMCID: PMC7782833 DOI: 10.1038/s41416-020-01126-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Upregulation of sialyltransferases—the enzymes responsible for the addition of sialic acid to growing glycoconjugate chains—and the resultant hypersialylation of up to 40–60% of tumour cell surfaces are established hallmarks of several cancers, including lung, breast, ovarian, pancreatic and prostate cancer. Hypersialylation promotes tumour metastasis by several routes, including enhancing immune evasion and tumour cell survival, and stimulating tumour invasion and migration. The critical role of enzymes that regulate sialic acid in tumour cell growth and metastasis points towards targeting sialylation as a potential new anti-metastatic cancer treatment strategy. Herein, we explore insights into the mechanisms by which hypersialylation plays a role in promoting metastasis, and explore the current state of sialyltransferase inhibitor development.
Collapse
Affiliation(s)
- Christopher Dobie
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; and Molecular Horizons, University of Wollongong, NSW, 2522, Wollongong, Australia. .,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Jin C, Gao S, Li D, Shi X, Hu Z, Wang C, Xiao J, Sheng Z, Ding Z, Zhang D, Wang D, Wang T, Yang F, Yang Y, Wang X, Wu L, Xu Y. MiR-182-5p Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by ox-LDL Through Targeting PAPPA. Int Heart J 2020; 61:822-830. [DOI: 10.1536/ihj.19-708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chaolong Jin
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University
| | - Dayuan Li
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Xuegong Shi
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Zhangyue Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University
| | - Chunmiao Wang
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Jie Xiao
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Zhe Sheng
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Zhifeng Ding
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Dingxin Zhang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Di Wang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Tingting Wang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Fang Yang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Ying Yang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Xinglong Wang
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Liping Wu
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| | - Yue Xu
- Department of Cardiovascular Color Doppler, Heart Center, The First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
16
|
Wang H. MicroRNAs and Apoptosis in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21155353. [PMID: 32731413 PMCID: PMC7432330 DOI: 10.3390/ijms21155353] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the world, and its incidence is rising in developing countries. Treatment with 5-Fluorouracil (5-FU) is known to improve survival in CRC patients. Most anti-cancer therapies trigger apoptosis induction to eliminate malignant cells. However, de-regulated apoptotic signaling allows cancer cells to escape this signaling, leading to therapeutic resistance. Treatment resistance is a major challenge in the development of effective therapies. The microRNAs (miRNAs) play important roles in CRC treatment resistance and CRC progression and apoptosis. This review discusses the role of miRNAs in contributing to the promotion or inhibition of apoptosis in CRC and the role of miRNAs in modulating treatment resistance in CRC cells.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Li D, Huang W, Yang F, Li B, Cai S. Study of the modulatory mechanism of the miR-182-Clock axis in circadian rhythm disturbance after hypoxic–ischemic brain damage. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220929159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxic–ischemic encephalopathy (HIE) in neonates can lead to severe chronic neurological deficit, including mental retardation, epilepsy, and sleep–wake cycle (SWC) disorder. Among these defects, little is known about the molecular mechanism of circadian rhythm disorder after HIE. Therefore, further study of sleep problems and its mechanism in HIE children will provide new ideas for clinical treatment of HIE children. For pediatric patients with cerebral ischemia, somnipathy often occurs due to visual and airway abnormalities. From May 2010 to August 2013, 128 newborns with history of HIE were followed up. Meanwhile, 88 normal full-term newborns in the same period were taken as the control group. The clinical data of the patients were collected and the sleep status was assessed by questionnaire. To establish the hypoxic–ischemic brain injury model of neonatal rats and analyze the mechanism of mir-182 in the circadian rhythm disorder caused by pineal function injury. The core clock genes during the regulation of the circadian clock were explored by bioinformatics methods. Patients’ sleep quality was affected by the circadian rhythm and respiratory problems; the pineal gland can regulate the core clock genes in the circadian clock during regulation. miR-182 was highly expressed in the pineal gland after hypoxic–ischemic brain damage (HIBD). Children with mild and moderate HIE showed significant sleep disorders in varying degrees, which provided a clinical basis for improving the long-term prognosis of children with HIE through targeted treatment of sleep disorders. MiR-182 is highly expressed in the pineal gland and is related to the expression of CLOCK protein. CLOCK gene is the target gene of miR-182, which provides a new target for the treatment of rhythm disorder related to the damage of pineal function caused by HIBD.
Collapse
Affiliation(s)
- Dezhan Li
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, P.R. China
| | - Wei Huang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Fang Yang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Bin Li
- Department of Pediatric Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, P.R. China
| | - Shanshan Cai
- Department of Cardiovascular, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| |
Collapse
|
18
|
Shanmugapriya K, Kim H, Kang HW. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int J Biol Macromol 2020; 158:S0141-8130(20)33150-0. [PMID: 32387601 DOI: 10.1016/j.ijbiomac.2020.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
In the present study, we developed epidermal growth factor receptor conjugated fucoidan/alginate loaded hydrogels for targeting the delivery of hydrogel through the signaling pathway of the epidermal growth factor receptor (EGFR) to treat colon cancer. We aim to develop a drug delivery system of chlorin e6 encapsulated in hydrogel and tag it with EFGR to target cancer cells with low toxicity and limited side effects by using photodynamic therapy (PDT). The characterization and in vitro studies were conducted to evaluate the efficiency of the EGFR-hydrogel in colon cancer cells. Also, western blot analysis was used to assess protein expression levels. The in vitro results confirmed significant cell viability, proliferation, and migration of hydrogel in colon cancer. The cellular effects of the EFGR/AKT pathway were cell proliferation, inhibition of apoptosis, cell cycle progression, and cell survival and migration of colon cancer because of significant protein expression levels. The data suggested that hydrogel appears to be a promising targeting approach-PDT for treating colon cancer. Further in vivo studies are needed to conclude the overexpression level of EGFR on cancer cells. The study concluded that EGFR-H improved the targeting efficiency of hydrogel in colon cancer.
Collapse
Affiliation(s)
- Karuppusamy Shanmugapriya
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea
| | - Hyejin Kim
- Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, South Korea; Interdisciplinary program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, South Korea.
| |
Collapse
|
19
|
Zheng H, Wang JJ, Zhao LJ, Yang XR, Yu YL. Exosomal miR-182 regulates the effect of RECK on gallbladder cancer. World J Gastroenterol 2020; 26:933-946. [PMID: 32206004 PMCID: PMC7081010 DOI: 10.3748/wjg.v26.i9.933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the most common biliary malignancy, gallbladder cancer (GC) is an elderly-biased disease. Although extensive studies have elucidated the molecular mechanism of microRNA 182 (miR-182) and reversion-inducing-cysteine-rich protein with kazal motifs (RECK) in various cancers, the specific role of exosomal miR-182 and RECK in GC remains poorly understood.
AIM To explore the relationship between exosomal miR-182/RECK and metastasis of GC.
METHODS Paired GC and adjacent normal tissues were collected from 78 patients. Quantitative polymerase chain reaction was employed to detect miR-182 and exosomal miR-182 expression, and Western blotting was conducted to determine RECK expression. In addition, the effects of exosomal miR-182/RECK on the biological function of human GC cells were observed. Moreover, the double luciferase reporter gene assay was applied to validate the targeting relationship between miR-182 and RECK.
RESULTS Compared with normal gallbladder epithelial cells, miR-182 was highly expressed in GC cells, while RECK had low expression. Exosomal miR-182 could be absorbed and transferred by cells. Exosomal miR-182 inhibited RECK expression and promoted the migration and invasion of GC cells.
CONCLUSION Exosomal miR-182 can significantly promote the migration and invasion of GC cells by inhibiting RECK; thus miR-182 can be used as a therapeutic target for GC.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jin-Jing Wang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Li-Jin Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Xiao-Rong Yang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yong-Lin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
20
|
Dai W, Zhou J, Wang H, Zhang M, Yang X, Song W. miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract 2019; 216:152731. [PMID: 31785995 DOI: 10.1016/j.prp.2019.152731] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide usually diagnosed at advanced stages which causes poor prognosis of patients. Therefore, novel diagnostic biomarkers and therapeutic targets are urgently needed. MATERIALS AND METHODS miR-424-5p was identified through integrated analysis of three public databases. Loss-of-function experiments in HT29 and SW480 cells and mouse xenograft models were performed to explore the regulatory role of miR-424-5p in CRC. Bioinformatics analysis was used for predicting targets of miR-424-5p and its functional and pathway enrichment analysis. RESULTS miR-424-5p expression was significantly upregulated in CRC tissues and cell lines and associated with prognosis of CRC patients. Experiments in vitro and in vivo showed miR-424-5p promotes CRC cell proliferation and metastasis by directly inhibiting SCN4B. Besides, CRC cells secret miR-424-5p into peripheral blood through exosomes and circulating exosomal miR-424-5p could discriminate CRC patients with early stage from healthy people with AUC value of 0.82. CONCLUSIONS miR-424-5p serves as an oncogene in CRC and circulating exosomal miR-424-5p is a novel potential diagnostic biomarker of CRC patients.
Collapse
Affiliation(s)
- Weijie Dai
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Jiajie Zhou
- General Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Han Wang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Menghui Zhang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Wei Song
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|