1
|
Anbazhagan AN, Priyamvada S, Kumar A, Jayawardena D, Borthakur A, Gill RK, Alrefai WA, Dudeja PK, Saksena S. Downregulation of NHE-3 (SLC9A3) expression by MicroRNAs in intestinal epithelial cells. Am J Physiol Cell Physiol 2022; 323:C1720-C1727. [PMID: 36189974 PMCID: PMC9722255 DOI: 10.1152/ajpcell.00294.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Na+/H+ exchanger-3 (NHE-3) is the major apical membrane transporter involved in vectorial Na+ absorption in the intestine. Dysregulation of NHE-3 expression and/or function has been implicated in pathophysiology of diarrhea associated with gut inflammation and infections. Therefore, it is critical to understand the mechanisms involved in the regulation of NHE-3 expression. MicroRNAs (miRNAs) are highly conserved small RNAs that can regulate gene expression at the posttranscriptional level. To date, however, very little is known about the regulation of NHE-3 expression by microRNAs. Therefore, current studies were undertaken to examine the potential miRNA candidates that can regulate the expression of NHE-3 in intestinal epithelial cells. In silico analysis, using different algorithms, predicted several miRNAs that target NHE-3. MicroRNAs with highest context and target score, miR-326, miR-744-5p, and miR-330-5p, were selected for the current study. Human NHE-3 gene 3' untranslated region [3'UTR; 160 base pair (bp)] was cloned into pmirGLO vector upstream of luciferase reporter and transiently transfected with mimics of miR-326, miR-744-5p, and miR-330-5p into Caco-2, HT-29, and SK-CO15 cells. Cotransfection of NHE-3 3' UTR with miR-326 and -miR-330-5p mimics resulted in a significant decrease in relative luciferase activity. Transfection of miR-326 and -330-5p mimics into SK-CO15 cells significantly decreased the NHE-3 protein expression, with no change in NHE-3 messenger ribonucleic acid (mRNA) levels. Our findings demonstrate a novel mechanism for posttranscriptional regulation of NHE-3 by miR-326 and -330-5p by translational repression. We speculate that miR-326 and -330-5p dependent pathways may be involved in modulating NHE-3 expression under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alip Borthakur
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
2
|
Hammash D, Mahfood M, Khoder G, Ahmed M, Tlili A, Hamoudi R, Harati R. miR-623 Targets Metalloproteinase-1 and Attenuates Extravasation of Brain Metastatic Triple-Negative Breast Cancer Cells. BREAST CANCER: TARGETS AND THERAPY 2022; 14:187-198. [PMID: 35936987 PMCID: PMC9354772 DOI: 10.2147/bctt.s372083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Most breast cancer-related deaths result from metastasis. Understanding the molecular basis of metastasis is needed for the development of effective targeted and preventive strategies. Matrix metalloproteinase-1 (MMP1) plays an important role in brain metastasis (BM) of triple-negative breast cancer (TNBC) by promoting extravasation of cancer cells across the brain endothelium (BE). MMP1 expression is controlled by endogenous microRNAs. Preliminary bioinformatics analysis has revealed that miR-623, known to target the 3ʹUTR of MMP1, is significantly downregulated in brain metastatic tumors compared to primary BC tumors. However, the involvement of miR-623 in MMP1 upregulation in breast cancer brain metastatic cells (BCBMC) remains unexplored. Here, we investigated the role of miR-623 in MMP1 regulation and its impact on the extravasation of TNBC cells through the BE in vitro. Materials and Methods A loss-and-gain of function method was employed to address the effect of miR-623 modulation on MMP1 expression. MMP1 regulation by miR-623 was investigated by real-time PCR, western blot, luciferase and transwell migration assays using an in vitro human BE model. Results Our results confirmed that brain metastatic TNBC cells express lower levels of miR-623 compared with cells having low propensity to spread toward the brain. miR-623 binds to the 3′-untranslated region of MMP1 transcript and downregulates its expression. Restoring miR-623 expression significantly decreased MMP1 expression, preserved the endothelial barrier integrity, and attenuated transmigration of BCBMC through the BE. Conclusion Our study elucidates, for the first time, the crucial role of miR-623 as MMP1 direct regulator in BCBMC and sheds light on miR-623 as a novel therapeutic target that can be exploited to predict and prevent brain metastasis in TNBC. Importantly, the presents study helps in unraveling a brain metastasis-specific microRNA signature in TNBC that can be used as a guide to personalized metastasis prediction and preventive approach with better therapeutic outcome.
Collapse
Affiliation(s)
- Dua Hammash
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technologies, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: Rania Harati, Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates, Tel +971 6 505 7438, Fax +971 6 558 5812, Email
| |
Collapse
|
3
|
MicroRNA-143 act as a tumor suppressor microRNA in human lung cancer cells by inhibiting cell proliferation, invasion, and migration. Mol Biol Rep 2022; 49:7637-7647. [PMID: 35717476 DOI: 10.1007/s11033-022-07580-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/AIM MicroRNAs play crucial roles in controlling cellular biological processes. miR-143 expression is usually downregulated in different cancers. In this study, we focused on exploring the role of miR143 in NSCLC development. METHODS Bioinformatics analyses were used to detect the expression level of miR-143 in lung tumors. The cells were transfected by pCMV-miR-143 vectors. The efficacy of transfection was verified by Flow cytometry. The influence of miR-143 replacement on NSCLC cells migration, proliferation, and apoptosis was detected using wound-healing assay, MTT assay, and DAPI staining, respectively. RESULTS MTT assay revealed that overexpression of miR143 inhibited cell growth and proliferation. Scratch assay results demonstrated that restoration of miR143 suppressed cell migration. The qRT-PCR assay was further used to detect the assumed relationship between miR143 and apoptotic and metastatic-related genes. CONCLUSION The findings showed that miR-143 could reduce cell proliferation, invasion, and migration by reducing CXCR4, Vimentin, MMP-1, Snail-1, C-myc expression level, and increasing E-cadherin expression levels in lung cancer cells and might be a potential target in NSCLC's targeted therapy.
Collapse
|
4
|
Guo S, Zhu KX, Yu WH, Wang T, Li S, Wang YX, Zhang CC, Guo JQ. SH3PXD2A-AS1/miR-330-5p/UBA2 ceRNA network mediates the progression of colorectal cancer through regulating the activity of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1969-1980. [PMID: 33073888 DOI: 10.1002/tox.23038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs have important roles in the occurrence and progression of various cancers. However, the molecular mechanism of lncRNAs in colorectal cancer (CRC) is not well illustrated. Thus, we used bioinformatics methods to find potential lncRNAs associated with CRC progression, and chose SH3PXD2A-AS1 as a candidate for further analysis. The roles of SH3PXD2A-AS1 in CRC cells were determined by CCK-8, transwell invasion, wound healing and flow cytometry assays. Besides, we established the CRC tumor models in nude mice to study the effect of SH3PXD2A-AS1 on the tumor growth. Based on the ceRNA hypothesis, we used miRDB and miRTarBase websites to identify the SH3PXD2A-AS1-related ceRNA regulatory network, and measured the roles of this network in CRC cells. The results revealed that the expression profiles of SH3PXD2A-AS1 from GEO and TCGA databases showed an aberrant high level in CRC tissues compared with colorectal normal tissues. SH3PXD2A-AS1 over-expression was also found in CRC cells. SH3PXD2A-AS1 knockdown inhibited the CRC cellular proliferation, invasion and migration but induced apoptosis. Besides, SH3PXD2A-AS1 knockdown also suppressed the growth of CRC tumors. Furthermore, SH3PXD2A-AS1 could function as a ceRNA of miR-330-5p. Additionally, UBA2 was proved to be a target gene of miR-330-5p. Moreover, SH3PXD2A-AS1 knockdown downregulated UBA2 expression through sponging miR-330-5p to inactivate the Wnt/β-catenin signaling pathway, thereby inhibiting the cell growth and promoting apoptosis. Therefore, the SH3PXD2A-AS1/miR-330-5p/UBA2 network could regulate the progression of CRC through the Wnt/β-catenin pathway. These findings offer new sights for understanding the pathogenesis of CRC and provide potential biomarkers for CRC treatment.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Kong-Xi Zhu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Wei-Hua Yu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Teng Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Shuai Li
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yun-Xia Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Chen-Chen Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jian-Qiang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
5
|
Hsa-miR-330-5p Aggravates Thyroid Carcinoma via Targeting FOXE1. JOURNAL OF ONCOLOGY 2021; 2021:1070365. [PMID: 34306074 PMCID: PMC8272668 DOI: 10.1155/2021/1070365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Background Thyroid carcinoma (TC) is one of the frequent endocrine malignancies, and growing evidence suggests that aberrant microRNA (miRNA) expression contributes to TC development and progression. Nevertheless, the function of miR-330-5p in the progression of TC remains unknown. Methods The expression levels of miR-330-5 in patients with thyroid carcinoma and healthy controls were detected, and their potential diagnostic and prognostic values were analyzed. Results In this study, we firstly found that miR-330-5p expression was markedly upregulated in TC tissue and cell lines. Functionally, the downregulation of miR-330-5p suppressed TC cell proliferation, migration, and invasion. Further studies revealed that miR-330-5p negatively regulated the expression of forkhead box E1 (FOXE1). More importantly, the results of rescue experiments suggested that FOXE1 overexpression reduced the positive effects of miR-330-5p overexpression in TPC-1 and K-1 cells. Conclusions This work revealed that miR-330-5p facilitated the TC progression through targeting FOXE1, which may offer novel therapeutic options for TC.
Collapse
|
6
|
Qin L, Sun X, Zhou F, Liu C. CircLRP6 contributes to prostate cancer growth and metastasis by binding to miR-330-5p to up-regulate NRBP1. World J Surg Oncol 2021; 19:184. [PMID: 34158077 PMCID: PMC8220703 DOI: 10.1186/s12957-021-02287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNA low-density lipoprotein receptor-related protein 6 (circLRP6) is considered as an oncogene in many types of cancers. However, the function and mechanisms of circLRP6 in prostate cancer (PCa) tumorigenesis remain largely undefined. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were conducted to assess the expression of circLRP6, microRNA (miR)-330-5p, and nuclear receptor binding protein 1 (NRBP1). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EDU) incorporation, flow cytometry, transwell, wound healing, and western blot assays were performed to detect cell proliferation, apoptosis, and metastasis in vitro. Subcutaneous tumor growth was observed in nude mice to investigate the role of circLRP6 in vivo. The targeting relationship between miR-330-5p and NRBP1 or circLRP6 was verified using dual-luciferase reporter, pull-down, and RNA immunoprecipitation (RIP) assays. Immunohistochemistry was employed to test relative protein expression. Results CircLRP6 was highly expressed in PCa tissues and cells, knockdown of circLRP6 impaired PCa cell growth and metastasis in vitro by affecting cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Mechanistic studies showed that circLRP6 could competitively bind with miR-330-5p to prevent the degradation of its target gene NRBP1. Rescue assay suggested that miR-330-5p inhibition reversed the inhibitory effects of circLRP6 knockdown on PCa cell growth and metastasis. Moreover, overexpression of miR-330-5p suppressed PCa progression via NRBP1. Notably, tumor formation assay indicated that circLRP6 silencing impeded tumor growth and EMT in vivo. Conclusion Our findings demonstrated that circLRP6 promoted PCa tumorigenesis and metastasis through miR-330-5p/NRBP1 axis, suggesting a potential therapeutic target for PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02287-2.
Collapse
Affiliation(s)
- Linghui Qin
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Xiaosong Sun
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Fei Zhou
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Cheng Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
7
|
Qi Y, He J, Zhang Y, Wang L, Yu Y, Yao B, Tian Z. Circular RNA hsa_circ_0001666 sponges miR‑330‑5p, miR‑193a‑5p and miR‑326, and promotes papillary thyroid carcinoma progression via upregulation of ETV4. Oncol Rep 2021; 45:50. [PMID: 33760216 PMCID: PMC7934216 DOI: 10.3892/or.2021.8001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of regulators that affect the aggressive behaviors of several types of cancer. Hsa_circ_0001666 (also referred to as hsa_circ_000742) is a newly discovered circRNA that is upregulated in human papillary thyroid carcinoma (PTC) based on microarray analysis. However, the role of hsa_circ_0001666 in PTC progression remains unknown. Thus, the aim of the present study was to determine the potential function and underlying mechanism of hsa_circ_0001666 in PTC. The results demonstrated that hsa_circ_0001666 was upregulated in both PTC clinical samples and cell lines. Its expression was associated with lymph node metastasis of patients with PTC. Knocking down hsa_circ_0001666 expression inhibited cell proliferation, as evidenced by decreased cell viability, arrest of cell cycle progression at the G1 phase and an increase in cell cycle-associated proteins. Apoptosis rates and expression levels of pro-apoptotic proteins were also increased by silencing hsa_circ_0001666. In xenograft experiments, the oncogenic effect of hsa_circ_0001666 on tumor growth was verified. Additionally, luciferase reporter assays showed that hsa_circ_0001666 and ETS variant transcription factor 4 (ETV4) shared common binding sites with three microRNAs [(miRNA/miR)-330-5p, miR-193a-5p and miR-326]. Knockdown of these miRNAs separately reversed the inhibitory effect of hsa_circ_0001666 small interfering RNAs on PTC tumor aggressiveness, and ETV4 overexpression also induced a similar effect to that of miRNA inhibitors. Thus, hsa_circ_0001666 may function as an oncogene, promoting PTC tumorigenesis via the miR-330-5p/miR-193a-5p/miR-326/ETV4 pathway. This provides a basis for identifying potential novel therapeutic targets for PTC.
Collapse
Affiliation(s)
- Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Yifan Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Baiyu Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
8
|
Wang L, Li H, Qiao Q, Ge Y, Ma L, Wang Q. Circular RNA circSEMA5A promotes bladder cancer progression by upregulating ENO1 and SEMA5A expression. Aging (Albany NY) 2020; 12:21674-21686. [PMID: 33176280 PMCID: PMC7695386 DOI: 10.18632/aging.103971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BC) is one of the most commonly diagnosed urologic carcinomas, with high recurrence and death rates. Circular RNAs (circRNAs) are a class of noncoding RNAs which are anomalously expressed in cancers and involved in the progression of cancers. In this study, we found that circSEMA5A was upregulated in BC tissues and cell lines. The overexpressed circSEMA5A was correlated with malignant characteristics of BC. In vitro data indicated that circSEMA5A promoted proliferation, suppressed apoptosis, facilitated migration, accelerated invasion, enhanced angiogenesis and promotes glycolysis of BC. Mechanistically, circSEMA5A served as a miRNA sponge for miR-330-5p to upregulates Enolase 1 (ENO1) expression and facilitated the activation of Akt and β-catenin signaling pathways. Then, we showed that circSEMA5A exerted its biological functions partially via miR-330-5p/ENO1 signaling. Moreover, circSEMA5A raised SEMA5A expression by recruiting EIF4A3 to enhance the mRNA stability of SEMA5A, and thereby accelerated BC angiogenesis. To sum up, circSEMA5A is upregulated in BC and facilitates BC progression by mediating miR-330-5p/ENO1 signaling and upregulating SEMA5A expression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Haoran Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingdong Qiao
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Yukun Ge
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Ling Ma
- Department of Urology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Qiang Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Impact of Deoxycholic Acid on Oesophageal Adenocarcinoma Invasion: Effect on Matrix Metalloproteinases. Int J Mol Sci 2020; 21:ijms21218042. [PMID: 33126685 PMCID: PMC7672620 DOI: 10.3390/ijms21218042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.
Collapse
|
10
|
Harati R, Hafezi S, Mabondzo A, Tlili A. Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. PLoS One 2020; 15:e0239292. [PMID: 33002044 PMCID: PMC7529272 DOI: 10.1371/journal.pone.0239292] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain metastasis (BM) is a major cause of morbidity and mortality in breast cancer (BC) and its molecular mechanism remains poorly understood. Transmigration of metastatic cells through the brain endothelium is an essential step in BM. Metalloproteinase-1 (MMP-1) overexpression plays a key role in promoting trans-endothelial migration by degrading the inter-endothelial junctions and disrupting the endothelial integrity. However, little is known about the molecular mechanisms that induce MMP-1 in metastatic cells granting them a brain invasive phenotype. MiR-202-3p is downregulated in brain metastases compared to primary breast tumors and directly targets MMP-1. Here, we unraveled a critical role of miR-202-3p loss in MMP-1 upregulation promoting transmigration of metastatic cells through the brain endothelium. METHODS A variant of the MDA-MB-231 human BC cell line (MDA-MB-231-BrM2) selected for its propensity to form brain metastases was found to express high levels of MMP-1 and low levels of miR-202-3p compared to the parental cells. Using a gain-and-loss of function approach, we modulated levels of miR-202-3p and examined the resultant effect on MMP-1 expression. Effect of miR-202-3p modulation on integrity of the brain endothelium and the transmigrative ability of BC cells were also examined. RESULTS Loss of miR-202-3p in breast cancer cells enhanced their transmigration through the brain endothelium by upregulating MMP-1 and disrupting the inter-endothelial junctions (claudin-5, ZO-1 and ß-catenin). Restoring miR-202-3p exerted a metastasis-suppressive effect and preserved the endothelial barrier integrity. CONCLUSIONS Our study identified a critical regulatory role of miR-202-3p in brain metastasis and shed light on miR-202-3p/MMP-1 axis as a novel prognostic and therapeutic target that can be exploited to predict and prevent brain metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aloïse Mabondzo
- Department of Medicines and Healthcare Technologies, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|