1
|
Xie Y, Li J, Tao Q, Wu Y, Liu Z, Zeng C, Chen Y. Identification of glutamine metabolism-related gene signature to predict colorectal cancer prognosis. J Cancer 2024; 15:3199-3214. [PMID: 38706895 PMCID: PMC11064262 DOI: 10.7150/jca.91687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 05/07/2024] Open
Abstract
Backgrounds: Colorectal cancer (CRC) is a highly malignant gastrointestinal malignancy with a poor prognosis, which imposes a significant burden on patients and healthcare providers globally. Previous studies have established that genes related to glutamine metabolism play a crucial role in the development of CRC. However, no studies have yet explored the prognostic significance of these genes in CRC. Methods: CRC patient data were downloaded from The Cancer Genome Atlas (TCGA), while glutamine metabolism-related genes were obtained from the Molecular Signatures Database (MSigDB) database. Univariate COX regression analysis and LASSO Cox regression were utilized to identify 15 glutamine metabolism-related genes associated with CRC prognosis. The risk scores were calculated and stratified into high-risk and low-risk groups based on the median risk score. The model's efficacy was assessed using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve analysis. Cox regression analysis was employed to determine the risk score as an independent prognostic factor for CRC. Differential immune cell infiltration between the high-risk and low-risk groups was assessed using the ssGSEA method. The clinical applicability of the model was validated by constructing nomograms based on age, gender, clinical staging, and risk scores. Immunohistochemistry (IHC) was used to detect the expression levels of core genes. Results: We identified 15 genes related to glutamine metabolism in CRC: NLGN1, RIMKLB, UCN, CALB1, SYT4, WNT3A, NRCAM, LRFN4, PHGDH, GRM1, CBLN1, NRG1, GLYATL1, CBLN2, and VWC2. Compared to the high-risk group, the low-risk group demonstrated longer overall survival (OS) for CRC. Clinical correlation analysis revealed a positive correlation between the risk score and the clinical stage and TNM stage of CRC. Immune correlation analysis indicated a predominance of Th2 cells in the low-risk group. The nomogram exhibited excellent discriminatory ability for OS in CRC. Immunohistochemistry revealed that the core gene CBLN1 was expressed at a lower level in CRC, while GLYATL1 was expressed at a higher level. Conclusions: In summary, we have successfully identified and comprehensively analyzed a gene signature associated with glutamine metabolism in CRC for the first time. This gene signature consistently and reliably predicts the prognosis of CRC patients, indicating its potential as a metabolic target for individuals with CRC.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
| | - Jun Li
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
| | - Qing Tao
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
| | - Yonghui Wu
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
| | - Zide Liu
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
| | - Chunyan Zeng
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Youxiang Chen
- Department of Gastroenterology, digestive disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Alekseeva AI, Khalansky AS, Miroshnichenko EA, Gerasimov AD, Sentyabreva AV, Kudelkina VV, Osipova NS, Gulyaev MV, Gelperina SE, Kosyreva AM. The Effect of Therapy Regimen on Antitumor Efficacy of the Nanosomal Doxorubicin against Rat Glioblastoma 101.8. Bull Exp Biol Med 2024; 176:697-702. [PMID: 38724814 DOI: 10.1007/s10517-024-06092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 05/18/2024]
Abstract
One of the key problems of glioblastoma treatment is the low effectiveness of chemotherapeutic drugs. Incorporation of doxorubicin into PLGA nanoparticles allows increasing the antitumor effect of the cytostatics against experimental rat glioblastoma 101.8. Animal survival, tumor volume, and oncogene expression in tumor cells were compared after early (days 2, 5, and 8 after tumor implantation) and late (days 8, 11, and 14) start of the therapy. At late start, a significant increase in the expression of oncogenes Gdnf, Pdgfra, and Melk and genes determining the development of multidrug resistance Abcb1b and Mgmt was revealed. At early start of therapy, only the expression of oncogenes Gdnf, Pdgfra, and Melk was enhanced. Early start of treatment prolonged the survival time and increased tumor growth inhibition by 141.4 and 95.7%, respectively, in comparison with the untreated group; these differences were not observed in the group with late start of therapy. The results indicate that the time of initiation of therapy is a critical parameter affecting the antitumor efficacy of DOX-PLGA.
Collapse
Affiliation(s)
- A I Alekseeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia.
| | - A S Khalansky
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - E A Miroshnichenko
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A D Gerasimov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Sentyabreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Kudelkina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - N S Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, M. V. Lo-monosov Moscow State University, Moscow, Russia
| | - S E Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Du R, Xiong S. Hsa_circ_0084912 Drives the Progression of Cervical Cancer Via Regulating miR-429/SOX2 Pathway. Mol Biotechnol 2023; 65:2018-2029. [PMID: 36913084 DOI: 10.1007/s12033-023-00701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
We focus on hsa_circ_0084912's role in Cervical cancer (CC) and its molecular pathways. In order to determine the expression of Hsa_circ_0084912, miR-429, and SOX2 in CC tissues and cells, Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were utilized. Cell counting kit 8 (CCK-8), colony formation and Transwell assays were respectively to analyze CC cell proliferation viability, clone formation ability and migration. RNA immunoprecipitation (RIP) assay and dual-luciferase assay were used to assure the targeting correlation among hsa_circ_0084912/SOX2 and miR-429. By using a xenograft tumor model, the hsa_circ_0084912 impact on CC cell proliferation in vivo was confirmed. Hsa_circ_0084912 and SOX2 expressions were aggrandized, however, miR-429 expression was descended in CC tissues and cells. Silencing hsa_circ_0084912 inhibited cell proliferation, colony formation and migration in vitro of CC, meanwhile reducing growth of tumor in vivo. MiR-429 might be sponged by Hsa_circ_0084912 to control SOX2 expression. Hsa_circ_0084912 knockdown impact on the malignant phenotypes of CC cells was restored by miR-429 inhibitor. Moreover, SOX2 silencing eliminated the promotive effects of miR-429 inhibitors on CC cell malignancies. By raising SOX2 expression by targeting miR-429, hsa_circ_0084912 accelerated the development of CC, offering fresh proof that it is a viable target for CC treatment.
Collapse
Affiliation(s)
- Rong Du
- Department of Gynecology, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Shiyi Xiong
- Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Jianghan District, No. 11, Lingjiaohu Road, Wuhan, 430040, Hubei, China.
| |
Collapse
|
4
|
Alekseeva AI, Gerasimov AD, Kudelkina VV, Osipova NS, Drozd SF, Pavlova GV, Kosyreva AM, Fatkhudinov TK. Changes in Oncogene Expression in Experimental Glioblastoma 101.8 Rats during Therapy with PLGA Nanoparticles Loaded with Doxorubicin. Bull Exp Biol Med 2023; 174:518-522. [PMID: 36899203 DOI: 10.1007/s10517-023-05740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/12/2023]
Abstract
We compared the expression of the main glioblastoma oncogenes during therapy with doxorubicin (Dox) and Dox in nanoparticles based on a copolymer of lactic and glycolic acids (Dox-PLGA) at a delayed start of treatment. Late initiation of Dox-PLGA therapy of glioblastoma showed an increase in the expression of multiple drug resistance genes, such as Abcb1b and Mgmt, and a decrease in Sox2 expression. Increased expression of other oncogenes (Melk, Wnt3, Gdnf, and Pdgfra) were observed during both Dox and Dox-PLGA therapy. These changes indicate increased tumor aggressiveness and its resistance to cytostatics at the late start of therapy.
Collapse
Affiliation(s)
- A I Alekseeva
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia.
| | - A D Gerasimov
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - V V Kudelkina
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - N S Osipova
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - S F Drozd
- N. N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- N. N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Kosyreva
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - T Kh Fatkhudinov
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
5
|
Caglar HO, Duzgun Z. Identification of upregulated genes in glioblastoma and glioblastoma cancer stem cells using bioinformatics analysis. Gene X 2023; 848:146895. [DOI: 10.1016/j.gene.2022.146895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
6
|
Benedetti V, Banfi F, Zaghi M, Moll-Diaz R, Massimino L, Argelich L, Bellini E, Bido S, Muggeo S, Ordazzo G, Mastrototaro G, Moneta M, Sessa A, Broccoli V. A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. SCIENCE ADVANCES 2022; 8:eabn3986. [PMID: 35921410 PMCID: PMC9348799 DOI: 10.1126/sciadv.abn3986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.
Collapse
Affiliation(s)
- Valerio Benedetti
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raquel Moll-Diaz
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Argelich
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Mastrototaro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Moneta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
7
|
Corell A, Gomez Vecchio T, Ferreyra Vega S, Dénes A, Neimantaite A, Hagerius A, Barchéus H, Solheim O, Lindskog C, Olsson Bontell T, Carén H, Jakola AS, Smits A. Stemness and clinical features in relation to the subventricular zone in diffuse lower-grade glioma; an exploratory study. Neurooncol Adv 2022; 4:vdac074. [PMID: 35795469 PMCID: PMC9248775 DOI: 10.1093/noajnl/vdac074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The subventricular zone (SVZ) of the human brain is a site of adult stem cell proliferation and a microenvironment for neural stem cells (NSCs). It has been suggested that NSCs in the SVZ are potential cells of origin containing driver mutations of glioblastoma, but their role in the origin of diffuse lower-grade gliomas (dLGGs) is not much studied. Methods We included 188 patients ≥18 years with IDH-mutated dLGG (WHO grades 2–3) histologically diagnosed between 2007 and 2020. Tissue microarrays of tumor samples for patients between 2007 and 2016 were used for immunodetection of Nestin, SOX2, SOX9, KLF4, NANOG, CD133 cMYC, and Ki67. DNA methylation profile was used for stemness index (mDNAsi). Tumor contact with the SVZ was assessed and the distance was computed. Results Overall, 70.2% of the dLGG had SVZ contact. Tumors with SVZ contact were larger (102.4 vs 30.9 mL, P < .01), the patients were older (44.3 vs 40.4 years, P = .04) and more often had symptoms related to increased intracranial pressure (31.8% vs 7.1%, P < .01). The expression of SOX2, SOX9, Nestin, and Ki67 showed intersample variability, but no difference was found between tumors with or without SVZ contact, nor with the actual distance to the SVZ. mDNAsi was similar between groups (P = .42). Conclusions We found no statistical relationship between proximity with the SVZ and mDNAsi or expression of SOX2, SOX9, Nestin, and Ki67 in IDH-mutated dLGG. Our data suggest that the potential impact of SVZ on IDH-mutated dLGG is probably not associated with a more stemness-like tumor profile.
Collapse
Affiliation(s)
- Alba Corell
- Department of Neurosurgery, Sahlgrenska University Hospital , Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Tomás Gomez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Alexander Hagerius
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Hanna Barchéus
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology , Trondheim, Norway
- Department of Neurosurgery, St. Olavs University Hospital , Trondheim, Norway
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital , Gothenburg, Sweden
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital , Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology , Trondheim, Norway
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
- Department of Medicine, Neurology, Uppsala University , Uppsala, Sweden
| |
Collapse
|
8
|
Yang Z, Xu T, Xie T, Yang L, Wang G, Gao Y, Xi G, Zhang X. CDC42EP3 promotes glioma progression via regulation of CCND1. Cell Death Dis 2022; 13:290. [PMID: 35365622 PMCID: PMC8975815 DOI: 10.1038/s41419-022-04733-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Gliomas are the most common brain malignancies characterized by high degree of aggressiveness and high mortality. However, the underlying mechanism of glioma progression remains unclear. Here, we probed the role of CDC42EP3 (CDC42 effector protein 3) played in glioma development and its potential downstream mechanism. The expression of CDC42EP3 in tumor and normal brain tissues were examined through immunohistochemistry and we found the likelihood of CDC42EP3 overexpression was positively correlated with pathological grading. Patients with higher expression of CDC42EP3 were more likely to suffer from recurrence as well. Through constructing CDC42EP3-knockdown cell models, we discovered that silencing CDC42EP3 significantly restricted cell proliferation and migration but facilitated cell apoptosis in vitro. Inhibition on tumor growth mediated by CDC42EP3 depletion was further verified in vivo. Regarding downstream target of CDC42EP3, we found that it may positively regulate the expression of CCND1 through c-Myc-mediated transcription. Furthermore, our findings affirmed that effects of CDC42EP3 overexpression on cell proliferation, migration and apoptosis could be confined by depleting CCND1. In a word, this study reported the tumor-promoting role of CDC42EP3 in glioma progression which probably functioned through targeting CCND1.
Collapse
Affiliation(s)
- Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liangliang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiping Wang
- Department of Neurology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gangming Xi
- Department of Neurology, Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
High CD44 Immunoexpression Correlates with Poor Overall Survival: Assessing the Role of Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma Patients from the High-Risk Population of Pakistan. Int J Surg Oncol 2022; 2022:9990489. [PMID: 35296132 PMCID: PMC8920653 DOI: 10.1155/2022/9990489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a top-ranked cancer in the Pakistani population, and patient survival has remained unchanged at ∼50% for several decades. Recent advances have claimed that a subset of tumour cells, called cancer stem cells (CSCs), are responsible for tumour progression, treatment resistance, and metastasis, which leads to a poor prognosis. This study investigated the impact of CSC markers expression on overall survival (OS) and disease-free survival (DFS) of OSCC patients. Materials and Methods. Immunohistochemistry was used to evaluate CD44, CD133, L1CAM, and SOX2 expression in a well-characterized cohort of 100 Pakistani patients with primary treatment naïve OSCC. The immunoreactivity for each marker was correlated with patient clinicopathologic characteristics, oral cancer risk chewing habits, and survival. The minimum follow-up time for all patients was five years, and survival estimates were calculated using the Kaplan–Meier method and Cox proportional hazards model. Results. In this cohort of 100 patients, there were 57 males and 43 females. The median OS and DFS time durations observed were 64 and 52.5 months, respectively. Positive expression for CD44, CD133, L1CAM, and SOX2 was observed in 33%, 23%, 41%, and 63% of patients. High CD44 expression correlated with decreased OS (P=0.047) but did not influence DFS. However, CD133, L1CAM, and SOX2 had no effect on either OS or DFS. Tonsils, nodal involvement, and AJCC stage were independent predictors of worse OS and DFS both. Conclusion. Of the CSC markers investigated here, only CD44 was a predictor for poor OS. CD44 was also associated with advanced AJCC and T stages. Interestingly, CD133 was significantly lower in patients who habitually consumed oral cancer risk factors.
Collapse
|
10
|
Ren J, Xu Y, Liu J, Wu S, Zhang R, Cao H, Sun J. MAP3K8 Is a Prognostic Biomarker and Correlated With Immune Response in Glioma. Front Mol Biosci 2022; 8:779290. [PMID: 35004849 PMCID: PMC8733582 DOI: 10.3389/fmolb.2021.779290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
MAP3K8 is a serine/threonine kinase that is widely expressed in immune cells, non-immune cells, and many tumor types. The expression, clinical significance, biological role, and the underlying molecular mechanisms of MAP3K8 in glioma have not been investigated yet. Here, we discovered that MAP3K8 was aberrantly overexpressed in glioma and correlated with poor clinicopathological features of glioma by analysis on different datasets and immunohistochemistry staining. MAP3K8 is an independent prognostic indicator and significantly correlates with the progression of glioma. We also performed the function and pathway enrichment analysis of MAP3K8 in glioma to explore its biological functions and underlying molecular mechanisms in glioma. MAP3K8 co-expressed genes were mainly enriched in immune-related biological processes such as neutrophil activation, leukocyte migration, neutrophil-mediated immunity, lymphocyte-mediated immunity, T-cell activation, leukocyte cell–cell adhesion, regulation of leukocyte cell–cell adhesion, B-cell-mediated immunity, myeloid cell differentiation, and regulation of cell–cell adhesion. Single-cell RNA sequencing data and immunohistochemistry analysis demonstrated that MAP3K8 is expressed in malignant and immune cells and mainly enriched in the microglia/macrophage cells of glioma. The expression of MAP3K8 was positively correlated with immune infiltration, including effector memory CD4+ T cells, plasmacytoid dendritic cells, neutrophils, myeloid dendritic cells, mast cells, and macrophage in glioma. Further correlation analysis demonstrated that a series of inhibitory immune checkpoint molecules, chemokines, and chemokine receptors was positively correlated with the expression of MAP3K8. MAP3K8 might play an essential role in tumor immunity, and inhibition of MPA3K8 is a plausible strategy for glioma immunotherapy.
Collapse
Affiliation(s)
- Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Sicheng Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ruihan Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jinmin Sun
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
12
|
Valtorta S, Lo Dico A, Raccagni I, Martelli C, Pieri V, Rainone P, Todde S, Zinnhardt B, De Bernardi E, Coliva A, Politi LS, Viel T, Jacobs AH, Galli R, Ottobrini L, Vaira V, Moresco RM. Imaging Metformin Efficacy as Add-On Therapy in Cells and Mouse Models of Human EGFR Glioblastoma. Front Oncol 2021; 11:664149. [PMID: 34012924 PMCID: PMC8126706 DOI: 10.3389/fonc.2021.664149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor of the brain. Despite the efforts, response to current therapies is poor and 2-years survival rate ranging from 6-12%. Here, we evaluated the preclinical efficacy of Metformin (MET) as add-on therapy to Temozolomide (TMZ) and the ability of [18F]FLT (activity of thymidine kinase 1 related to cell proliferation) and [18F]VC701 (translocator protein, TSPO) Positron Emission Tomography (PET) radiotracers to predict tumor response to therapy. Indeed, TSPO is expressed on the outer mitochondrial membrane of activated microglia/macrophages, tumor cells, astrocytes and endothelial cells. TMZ-sensitive (Gli36ΔEGFR-1 and L0627) or -resistant (Gli36ΔEGFR-2) GBM cell lines representative of classical molecular subtype were tested in vitro and in vivo in orthotopic mouse models. Our results indicate that in vitro, MET increased the efficacy of TMZ on TMZ-sensitive and on TMZ-resistant cells by deregulating the balance between pro-survival (bcl2) and pro-apoptotic (bax/bad) Bcl-family members and promoting early apoptosis in both Gli36ΔEGFR-1 and Gli36ΔEGFR-2 cells. In vivo, MET add-on significantly extended the median survival of tumor-bearing mice compared to TMZ-treated ones and reduced the rate of recurrence in the TMZ-sensitive models. PET studies with the cell proliferation radiopharmaceutical [18F]FLT performed at early time during treatment were able to distinguish responder from non-responder to TMZ but not to predict the duration of the effect. On the contrary, [18F]VC701 uptake was reduced only in mice treated with MET plus TMZ and levels of uptake negatively correlated with animals’ survival. Overall, our data showed that MET addition improved TMZ efficacy in GBM preclinical models representative of classical molecular subtype increasing survival time and reducing tumor relapsing rate. Finally, results from PET imaging suggest that the reduction of cell proliferation represents a common mechanism of TMZ and combined treatment, whereas only the last was able to reduce TSPO. This reduction was associated with the duration of treatment response. TSPO-ligand may be used as a complementary molecular imaging marker to predict tumor microenvironment related treatment effects.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Isabella Raccagni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano - Bicocca, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sergio Todde
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy
| | - Angela Coliva
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Department of Neuroradiology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Thomas Viel
- PARCC, INSERM, Université de Paris, Paris, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Zhang L, Guo C, Ji T, Chen X. SOX2 Regulates lncRNA CCAT1/MicroRNA-185-3p/FOXP3 Axis to Affect the Proliferation and Self-Renewal of Cervical Cancer Stem Cells. NANOSCALE RESEARCH LETTERS 2021; 16:2. [PMID: 33394184 PMCID: PMC7782617 DOI: 10.1186/s11671-020-03449-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
It has been presented the role of long non-coding RNAs (lncRNAs) in cervical cancer (CC). We aim to discuss the effect of sex-determining region Y-box 2 (SOX2)/lncRNA colon cancer-associated transcript-1 (CCAT1)/microRNA-185-3p (miR-185-3p)/forkhead box protein 3 (FOXP3) on the proliferation and self-renewal ability of CC stem cells. MiR-185-3p, SOX2, CCAT1 and FOXP3 expressions were tested in CC tissues and cells. The relationship between SOX2/CCAT1 expression and clinicopathological features in CC patients was verified. Loss- and gain-of-function investigations were conducted in CD44+HeLa cells to discuss biological functions and self-renewal capacity. Finally, the relationships among SOX2, CCAT1, FOXP3 and miR-185-3p were verified. miR-185-3p expression was decreased, while SOX2, CCAT1 and FOXP3 expressions were increased in CC tissues and cells. SOX2 and CCAT1 expressions were linked to tumor size, lymph node metastasis and international federation of gynecology and obstetrics stage of CC. Down-regulating SOX2 or CCAT1 and up-regulating miR-185-3p resulted in inhibition of proliferation, invasion, migration and cell sphere number as well as apoptosis acceleration of CD44+HeLa cells. SOX2 could bind to CCAT1 which affected miR-185-3p expression, and FOXP3 was targeted by miR-185-3p.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Tiefeng Ji
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China
| | - Xin Chen
- Department of Radiology, The First Hospital of Jilin University, Xinmin St. 71, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
14
|
Huang R, Li Z, Zhu X, Yan P, Song D, Yin H, Hu P, Lin R, Wu S, Meng T, Zhang J, Huang Z. Collagen Type III Alpha 1 chain regulated by GATA-Binding Protein 6 affects Type II IFN response and propanoate metabolism in the recurrence of lower grade glioma. J Cell Mol Med 2020; 24:10803-10815. [PMID: 32757451 PMCID: PMC7521258 DOI: 10.1111/jcmm.15705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 01/11/2023] Open
Abstract
Some studies suggested the prognosis value of immune gene in lower grade glioma (LGG). Recurrence in LGG is a tough clinical problem for many LGG patients. Therefore, prognosis biomarker is required. Multivariate prognosis Cox model was constructed and then calculated the risk score. And differential expressed transcription factors (TFs) and differential expressed immune genes (DEIGs) were co‐analysed. Besides, significant immune cells/pathways were identified by single sample gene set enrichment analysis (ssGSEA). Moreover, gene set variation analysis (GSVA) and univariate Cox regression were applied to filter prognostic signalling pathways. Additionally, significant DEIG and immune cells/pathways, and significant DEIG and pathways were co‐analysed. Further, differential enriched pathways were identified by GSEA. In sum, a scientific hypothesis for recurrence LGG including TF, immune gene and immune cell/pathway was established. In our study, a total of 536 primary LGG samples, 2,498 immune genes and 318 TFs were acquired. Based on edgeR method, 2,164 DEGs, 2,498 DEIGs and 31 differentials expressed TFs were identified. A total of 106 DEIGs were integrated into multivariate prognostic model. Additionally, the AUC of the ROC curve was 0.860, and P value of Kaplan‐Meier curve < 0.001. GATA6 (TF) and COL3A1 (DEIG) were selected (R = 0.900, P < 0.001, positive) as significant TF‐immune gene links. Type II IFN response (P < 0.001) was the significant immune pathway. Propanoate metabolism (P < 0.001) was the significant KEGG pathway. We proposed that COL3A1 was positively regulated by GATA6, and by effecting type II IFN response and propanoate metabolism, COL3A1 involved in LGG recurrence.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruoyi Lin
- Tongji University School of Medicine, Shanghai, China
| | - Shengyu Wu
- Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Tongji University School of Medicine, Shanghai, China.,Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|