1
|
Zhao Z, Huo Y, Du Y, Huang Y, Liu H, Zhang C, Yan J. A neutrophil extracellular trap-related risk score predicts prognosis and characterizes the tumor microenvironment in multiple myeloma. Sci Rep 2024; 14:2264. [PMID: 38278930 PMCID: PMC10817968 DOI: 10.1038/s41598-024-52922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 01/28/2024] Open
Abstract
Multiple myeloma (MM) is a distinguished hematologic malignancy, with existing studies elucidating its interaction with neutrophil extracellular traps (NETs), which may potentially facilitate tumor growth. However, systematic investigations into the role of NETs in MM remain limited. Utilizing the single-cell dataset GSE223060, we discerned active NET cell subgroups, namely neutrophils, monocytes, and macrophages. A transcriptional trajectory was subsequently constructed to comprehend the progression of MM. Following this, an analysis of cellular communication in MM was conducted with a particular emphasis on neutrophils, revealing an augmentation in interactions albeit with diminished strength, alongside abnormal communication links between neutrophils and NK cells within MM samples. Through the intersection of differentially expressed genes (DEGs) between NET active/inactive cells and MM versus healthy samples, a total of 316 genes were identified. This led to the development of a 13-gene risk model for prognostic prediction based on overall survival, utilizing transcriptomics dataset GSE136337. The high-risk group manifested altered immune infiltration and heightened sensitivity to chemotherapy. A constructed nomogram for predicting survival probabilities demonstrated encouraging AUCs for 1, 3, and 5-year survival predictions. Collectively, our findings unveil a novel NET-related prognostic signature for MM, thereby providing a potential avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Zhijia Zhao
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yuan Huo
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yufeng Du
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China
| | - Yanan Huang
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Hongchen Liu
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China
| | - Chengtao Zhang
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China.
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, 116031, China.
- Blood Stem Cell Transplantation Institute of Dalian Medical University, Dalian, 116023, China.
- Pediatric Oncology and Hematology Center, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Chen C, Li Y, Miao P, Xu Y, Xie Y, Chen Z, Qian S. Tumor immune cell infiltration score based model predicts prognosis in multiple myeloma. Sci Rep 2022; 12:17082. [PMID: 36224246 PMCID: PMC9556830 DOI: 10.1038/s41598-022-21763-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment plays an important role in various processes, including tumorigenesis, cancer progression, and metastasis. Immune signatures have been identified and verified for use in diagnosis and prognosis prediction. We used single-sample Gene Set Enrichment Analysis to evaluate tumor immune cell infiltration score (TIICs) and verify their prognostic significance in both training and validation cohorts and using this information to build a prognostic model. A total of 1281 samples were obtained for further evaluation of the immune enrichment scores of 28 immune cells, showing that Th17 cell contributed most significantly to survival. Using the median TIICs as a cutoff to divide the samples into two groups, we found that the high-TIICs group was associated with favorable outcomes in both the training and validation sets. We then constructed a prognostic model to predict the 6, 8, and 10-year survival outcomes. Further analysis showed that immune score and tumor purity were higher in the high-TIICs group, while the matrix score was lower in this group. Forty-two differentially expressed genes were identified between the two groups. This new prognostic model based on immune cell infiltration indicates the potential for TIICs in predicting prognosis and as targets for treatment.
Collapse
Affiliation(s)
- Can Chen
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Yiwei Li
- grid.13402.340000 0004 1759 700XDepartment of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Peiwen Miao
- grid.268505.c0000 0000 8744 8924Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Ying Xu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Yaping Xie
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Zhenzhen Chen
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Shenxian Qian
- grid.13402.340000 0004 1759 700XDepartment of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006 Zhejiang China
| |
Collapse
|
5
|
Hu YY, Ma CC, Ai KX. Knockdown of RAD51AP1 suppressed cell proliferation and invasion in esophageal squamous cell carcinoma. Discov Oncol 2022; 13:101. [PMID: 36197550 PMCID: PMC9535060 DOI: 10.1007/s12672-022-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal cancer is a common malignant tumor of digestive tract with esophageal squamous cell carcinoma (ESCC) being the main histological subtype. This study aimed to identify potential hub gene associated with the pathophysiology of ESCC through bioinformatics analysis and experiment validation. METHODS Three microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. The overlapping differentially expressed genes (DEGs) were analyzed by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway analyses were performed to predict the potential functions of DEGs. Nine hub genes were identified using protein-protein interaction (PPI) network and Cytoscape software. We selected RAD51-associated protein 1 (RAD51AP1) for further research because of its poor prognosis and it has not been sufficiently studied in ESCC. The effects of RAD51AP1 on proliferation, apoptosis, migration and invasion of ESCC cells were determined by in vitro functional assays. RESULTS RAD51AP1 expression was significantly upregulated in ESCC tissues compared with normal tissues by using The Cancer Genome Atlas (TCGA) database. High expression of RAD51AP1 was associated with worse survival in ESCC patients. RAD51AP1 expression was positively associated with the enrichment of Th2 cells and T helper cells. Furthermore, CCK-8 and colony formation assays showed knockdown of RAD51AP1 inhibited the proliferation of ESCC cells. Flow cytometry analysis indicated knockdown of RAD51AP1 induced cell cycle arrest and apoptosis in ESCC cells. Transwell assay revealed knockdown of RAD51AP1 suppressed the migration and invasion of ESCC cells. CONCLUSIONS Finally, our results demonstrated that RAD51AP1 silencing significantly inhibited cell proliferation and invasion in ESCC, thereby highlighting its potential as a novel target for ESCC treatment.
Collapse
Affiliation(s)
- Yang-Yang Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China
| | - Chen-Chao Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China
| | - Kai-Xing Ai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No.507, Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Gao S, Jin Y, Zhang H. Pan-Cancer Analyses Reveal Oncogenic and Immunological Role of Dickkopf-1 (DKK1). Front Genet 2021; 12:757897. [PMID: 34899842 PMCID: PMC8654726 DOI: 10.3389/fgene.2021.757897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
WNT signaling pathway inhibitor Dickkopf-1 (DKK1) is related to cancer progression; however, its diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. In this study, multiple bioinformatic analyses were conducted to evaluate therapeutic value of DKK1 in human cancers. The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project served as data resources. The Wilcoxon rank test was performed to evaluate the expression difference of DKK1 between cancer tissues and normal tissues. A Kaplan-Meier curve and Cox regression were used for prognosis evaluation. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the association of DKK1 expression with the immune cell infiltration. The potential function of DKK1 was explored by STRING and clusterProfiler. We found that the expression level of DKK1 is significantly different in different cancer types. Importantly, we demonstrated that DKK1 is an independent risk factor in ESCA, LUAD, MESO, and STAD. Further analysis revealed that DKK1 had a large effect on the immune cell infiltration and markers of certain immune cells, such as Th1 and Th2 cells. PPI network analysis and further pathway enrichment analysis indicated that DKK1 was mainly involved in the WNT signaling pathway. Our findings suggested that DKK1 might serve as a marker of prognosis for certain cancers by affecting the WNT signaling pathway and tumor immune microenvironment.
Collapse
Affiliation(s)
- Shuang Gao
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Hongmei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.,School of Clinical Medicine, North China University of Science and Technology, Tangshan, China.,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Song X, Wang TX, Zhu XN, Tan SK. Immunological and prognostic significance of CBX2 expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:1118-1129. [DOI: 10.11569/wcjd.v29.i19.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The number of cases of hepatocellular carcinoma (HCC), the sixth most common malignancy and the third leading cause of cancer death worldwide, has risen from 1.6 to 4.6 per 100000 people worldwide over the past 30 years. Guangxi has a high incidence of HCC in China, and its death rate ranks first in the spectrum of causes of tumor death in Guangxi, accounting for about 40% of all deaths from malignant tumors. Exploring the role of chromobox homolog 2 (CBX2) in HCC immunity will provide potential value for the treatment of this malignancy.
AIM To investigate the expression of CBX2 and analyze its immunological and prognostic significance in HCC.
METHODS The expression of CBX2 in 75 cases of HCC and matched non-tumor tissues was detected by tissue microarray and immunohistochemistry. The relationship of CBX2 expression with the clinicopathologic features of HCC and survival prognosis was analyzed. Then, the differential expression of CBX2 between HCC and normal tissues was verified in The Cancer Genomic Atlas (TCGA). Next, we explored the association between CBX2 expression and immunocyte infiltration, determined the relationship between CBX2 expression and immunosuppressors and immunostimulators, and identified the immune events that CBX2 was involved in through relevant GO and KEGG pathway enrichment analyses. A multi-gene risk prediction model was developed using a COX regression model, thereby generating a risk score that is an independent predictor of survival prognosis. ROC analysis was performed to assess the predictive accuracy of the risk score. Finally, a prognostic model with a calibration curve was constructed to predict the patients' survival probability at 3 and 5 years.
RESULTS The positive expression of CBX2 in HCC tissue was 66.7% (50/75), which was significantly higher than that in matched non-tumor tissues (25.3% (19/75); P < 0.01). The expression of CBX2 was associated with TNM stage and AFP status (P < 0.05). The survival time of patients in the CBX2 positive group was significantly lower than that of the CBX2 negative group, suggesting that CBX2 positive expression may be related to the prognosis of HCC patients. TCGA database verification reached the same conclusion. The expression of CBX2 was positively correlated with the infiltration levels of T helper 2 cells. CBX2 was identified to be associated with 10 immunosuppressors and 23 immunostimulators, and enriched analysis of related GO and KEGG pathways showed that CBX2 was associated with immune events such as intestinal immune network for immunoglobulin A production, cytokine-cytokine receptor interactions, cell adhesion molecules, and rheumatoid arthritis.
CONCLUSION CBX2 positive expression may be a prognostic risk factor in HCC patients. Our findings provide evidence for the role of CBX2 in tumor immunity in HCC, suggesting that CBX2 may be a potential immunoprognostic marker for HCC.
Collapse
Affiliation(s)
- Xin Song
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Xian Wang
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Minchenko ZM, Liubarets TF, Balan VV, Dmytrenko OO, Shlyakhtichenko TY, Moyseyenko VO, Silayev YO, Bebeshko VG. EFFICIENCY OF BONE MARROW PRECURSOR CELL COLONY-FORMING AS A PREDICTOR OF DISEASE COURSE IN PLASMA CELL MYELOMA PATIENTS WITH A HISTORY OF RADIATION EXPOSURE. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:490-501. [PMID: 33361856 DOI: 10.33145/2304-8336-2020-25-490-501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Assessment of role of the bone marrow colony-forming efficiency in plasma cell myeloma patients at different stages of treatment as a prognostic criterion for the disease course. MATERIALS AND METHODS The colony forming efficiency (CFE) was assayed in stage I-II plasma cell myeloma (PCM)patients (n = 37) aged 42-73, namely in patients survived after the Chornobyl NPP accident (n = 21) and persons notexposed to ionizing radiation (n = 16). There were 11 males exposed to ionizing radiation and having got stage I PCM,9 males and 3 females exposed and having got stage II PCM, 3 males and 3 females not exposed and having got stageI PCM, 6 males and 2 females not exposed and having got stage II PCM. Healthy persons (n = 20) were included in thecontrol group. RESULTS Number of the bone marrow (BM) granulocyte-macrophage colony-forming units (CFU-GM) in both exposedand not exposed PCM patients depended on a disease stage. CFU-GM was (16.7 ± 1.2) in the stage I PCM patients vs.(11.1 ± 1.1) in the stage II PCM ones both being lower (p < 0.05) compared to control (64.5 ± 2.2). Changes in cluster formation were similar, i.e. (37.7 ± 1.6) and (19.4 ± 1.3) correspondingly in the stage I and stage II PCM patients.Respective values in control were (89.8 ± 3.6). The CFE in stage I and stage II PCM patients at the time of diagnosiswas lower (5.7 ± 1.5 and 2.4 ± 1.1 respectively) vs. control (39.5 ± 1.51, p < 0.05), but has increased in remission upto (29. 6 ± 1.8) and (13.8 ± 1.2) respectively. There was no difference at that between the irradiated and non-irradiated patients. Number of the fibroblast colony-forming units (CFU-F) in the stage I and stage II PCM patients duringdiagnosis, namely (43.9 ± 5.4) and (22.5 ± 3.7), was lower (p < 0.05) vs. control (110.5 ± 4.9). Upon reaching remission the CFU-F value increased significantly (p < 0.05), reaching (87.4 ± 4.2) and (55.6 ± 2.7) correspondingly in thestage I and stage II PCM patients. CONCLUSION Dependence of the BM cell CFE on the stage of PCM and presence or absence of remission was established. Prognostic value of the CFE of BM CFU-GM in terms of life span of patients was shown (Ro Spearm = 0.39,p < 0.02), namely in case of CFE > 20 before the polychemotherapy administration the life span of PCM patients wassignificantly longer vs. cases of CFE < 20.
Collapse
Affiliation(s)
- Zh M Minchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - T F Liubarets
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V V Balan
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - O O Dmytrenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - T Yu Shlyakhtichenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V O Moyseyenko
- Bogomolets National Medical University of the Ministry of Health of Ukraine, 13 Tarasa Shevchenka Blvd., Kyiv, 01601, UkrainePrivate Higher Educational Institution «International Academy of Ecology and Medicine», 121 Kharkivske Hwy., Kyiv, 02000, Ukraine
| | - Yu O Silayev
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V G Bebeshko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|