1
|
Nelson BH, Hamilton P, Phung MT, Milne K, Harris B, Thornton S, Stevens D, Kalaria S, Singh K, Laumont CM, Moss E, Alimujiang A, Meagher NS, Bolithon A, Fereday S, Kennedy CJ, Hendley J, Ariyaratne D, Alsop K, Traficante N, Goode EL, Karnezis A, Shen H, Richardson J, McKinnonDeurloo C, Chase A, Grout B, Doherty JA, Harris HR, Cushing-Haugen KL, Anglesio M, Heinze K, Huntsman D, Talhouk A, Hanley GE, Alsop J, Jimenez-Linan M, Pharoah PD, Boros J, Brand AH, Harnett PR, Sharma R, Hecht JL, Sasamoto N, Terry KL, Karlan B, Lester J, Carney ME, Goodman MT, Hernandez BY, Wilkens LR, Behrens S, Turzanski Fortner R, Fasching PA, Bisinotto C, Candido Dos Reis FJ, Ghatage P, Köbel M, Elishaev E, Modugno F, Cook L, Le N, Gentry-Maharaj A, Menon U, García MJ, Rodriguez-Antona C, Farrington K, Kelemen LE, Kommoss S, Staebler A, Garsed DW, Brenton JD, Piskorz AM, Bowtell DD, DeFazio A, Ramus SJ, Pike MC, Pearce CL. Immunological and molecular features of the tumor microenvironment of long-term survivors of ovarian cancer. J Clin Invest 2024; 134:e179501. [PMID: 39470729 PMCID: PMC11645148 DOI: 10.1172/jci179501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUNDDespite an overall poor prognosis, about 15% of patients with advanced-stage tubo-ovarian high-grade serous carcinoma (HGSC) survive 10 or more years after standard treatment.METHODSWe evaluated the tumor microenvironment of this exceptional, understudied group using a large international cohort enriched for long-term survivors (LTS; 10+ years; n = 374) compared with mid-term (MTS; 5-7.99 years; n = 433) and short-term survivors (STS; 2-4.99 years; n = 416). Primary tumor samples were immunostained and scored for intraepithelial and intrastromal densities of 10 immune-cell subsets (including T cells, B cells, plasma cells, myeloid cells, PD-1+ cells, and PD-L1+ cells) and epithelial content.RESULTSPositive associations with LTS compared with STS were seen for 9 of 10 immune-cell subsets. In particular, the combination of intraepithelial CD8+ T cells and intrastromal B cells showed near 5-fold increased odds of LTS compared with STS. All of these associations were stronger in tumors with high epithelial content and/or the C4/Differentiated molecular subtype, despite immune-cell densities generally being higher in tumors with low epithelial content and/or the C2/Immunoreactive molecular subtype.CONCLUSIONThe tumor microenvironment of HGSC LTS is distinguished by the intersection of T and B cell coinfiltration, high epithelial content, and C4/differentiated molecular subtype, features which may inspire new approaches to immunotherapy.FUNDINGOvarian Cancer Research Program (OCRP) of the Congressionally Directed Medical Research Program (CDMRP), U.S. Department of Defense (DOD); American Cancer Society; BC Cancer Foundation; Canada's Networks of Centres of Excellence; Canadian Cancer Society; Canadian Institutes of Health Research; Cancer Councils of New South Wales, Victoria, Queensland, South Australia, and Tasmania, Cancer Foundation of Western Australia; Cancer Institute NSW; Cancer Research UK; Deutsche Forschungsgesellschaft; ELAN Funds of the University of Erlangen-Nuremberg; Fred C. and Katherine B. Andersen Foundation; Genome BC; German Cancer Research Center; German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research; Instituto de Salud Carlos III; Mayo Foundation; Minnesota Ovarian Cancer Alliance; Ministerio de Economía y Competitividad; Medical Research Council (MRC); National Center for Advancing Translational Sciences; National Health and Medical Research Council of Australia (NHMRC); Ovarian Cancer Australia; Peter MacCallum Foundation; Sydney West Translational Cancer Research Centre; Terry Fox Research Institute; The Eve Appeal (The Oak Foundation); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge; University of Pittsburgh School of Medicine; U.S. National Cancer Institute of the National Institutes of Health; VGH & UBC Hospital Foundation; Victorian Cancer Agency.
Collapse
Affiliation(s)
- Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phineas Hamilton
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Minh Tung Phung
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Bronwyn Harris
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shelby Thornton
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Donald Stevens
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karanvir Singh
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena Moss
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Aliya Alimujiang
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicola S Meagher
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ellen L Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony Karnezis
- Department of Pathology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Hui Shen
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jean Richardson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Patient advocate
| | | | | | | | - Jennifer Anne Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Kara L Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - David Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Gillian E Hanley
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Dp Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Harnett
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre and
| | - Raghwa Sharma
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Naoko Sasamoto
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Beth Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, USA
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine University of Hawaii, Honolulu, Hawaii, USA
| | - Marc T Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Christiani Bisinotto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linda Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado, USA
- Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nhu Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology and
- Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology and
| | - María J García
- Cancer Biology Department, Sols-Morreale Biomedical Research Institute (IIBM), CSIC UAM, Madrid, Spain
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Kyo Farrington
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Linda E Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health and Environmental Control, Columbia, South Carolina, USA
| | | | - Annette Staebler
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, Tuebingen, Germany
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David Dl Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan J Ramus
- School of Clinical Medicine, University of New South Wales (NSW) Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
2
|
Köbel M, Kang EY, Lee S, Terzic T, Karnezis AN, Ghatage P, Woo L, Lee CH, Meagher NS, Ramus SJ, Gorringe KL. Infiltrative pattern of invasion is independently associated with shorter survival and desmoplastic stroma markers FAP and THBS2 in mucinous ovarian carcinoma. Histopathology 2024; 84:1095-1110. [PMID: 38155475 DOI: 10.1111/his.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
AIMS Mucinous ovarian carcinoma (MOC) is a rare ovarian cancer histotype with generally good prognosis when diagnosed at an early stage. However, MOC with the infiltrative pattern of invasion has a worse prognosis, although to date studies have not been large enough to control for covariables. Data on reproducibility of classifying the invasion pattern are limited, as are molecular correlates for infiltrative invasion. We hypothesized that the invasion pattern would be associated with an aberrant tumour microenvironment. METHODS AND RESULTS Four subspecialty pathologists assessed interobserver reproducibility of the pattern of invasion in 134 MOC. Immunohistochemistry on fibroblast activation protein (FAP) and THBS2 was performed on 98 cases. Association with survival was tested using Cox regression. The average interobserver agreement for the infiltrative pattern was moderate (kappa 0.60, agreement 86.3%). After reproducibility review, 24/134 MOC (18%) were determined to have the infiltrative pattern and this was associated with a higher risk of death, independent of FIGO stage, grade, and patient age in a time-dependent manner (hazard ratio [HR] = 10.2, 95% confidence interval [CI] 3.0-34.5). High stromal expression of FAP and THBS2 was more common in infiltrative MOC (FAP: 60%, THBS2: 58%, both P < 0.001) and associated with survival (multivariate HR for FAP: 1.5 [95% CI 1.1-2.1] and THBS2: 1.91 [95% CI 1.1-3.2]). CONCLUSIONS The pattern of invasion should be included in reporting for MOC due to the strong prognostic implications. We highlight the histological features that should be considered to improve reproducibility. FAP and THBS2 are associated with infiltrative invasion in MOC.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Sandra Lee
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Tatjana Terzic
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Antony N Karnezis
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lawrence Woo
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB, Canada
| | - Nicola S Meagher
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Susan J Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
- Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| |
Collapse
|
3
|
Gao L, Wei Z, Ying F, Huang L, Zhang J, Sun S, Wang Z, Cai J, Zhang Y. Glutamine metabolism prognostic index predicts tumour microenvironment characteristics and therapeutic efficacy in ovarian cancer. J Cell Mol Med 2024; 28:e18198. [PMID: 38506093 PMCID: PMC10951877 DOI: 10.1111/jcmm.18198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Mounting evidence has highlighted the multifunctional characteristics of glutamine metabolism (GM) in cancer initiation, progression and therapeutic regimens. However, the overall role of GM in the tumour microenvironment (TME), clinical stratification and therapeutic efficacy in patients with ovarian cancer (OC) has not been fully elucidated. Here, three distinct GM clusters were identified and exhibited different prognostic values, biological functions and immune infiltration in TME. Subsequently, glutamine metabolism prognostic index (GMPI) was constructed as a new scoring model to quantify the GM subtypes and was verified as an independent predictor of OC. Patients with low-GMPI exhibited favourable survival outcomes, lower enrichment of several oncogenic pathways, less immunosuppressive cell infiltration and better immunotherapy responses. Single-cell sequencing analysis revealed a unique evolutionary trajectory of OC cells from high-GMPI to low-GMPI, and OC cells with different GMPI might communicate with distinct cell populations through ligand-receptor interactions. Critically, the therapeutic efficacy of several drug candidates was validated based on patient-derived organoids (PDOs). The proposed GMPI could serve as a reliable signature for predicting patient prognosis and contribute to optimising therapeutic strategies for OC.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zheng Wei
- Department of Obstetrics and GynecologyThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Feiquan Ying
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Lin Huang
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jingni Zhang
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Si Sun
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim Biophys Acta Rev Cancer 2024; 1879:189052. [PMID: 38097143 DOI: 10.1016/j.bbcan.2023.189052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive type of epithelial ovarian cancer, with high recurrence rate and chemoresistance being the main issues in its clinical management. HGSOC is specifically challenging due to the metastatic dissemination via spheroids in the ascitic fluid. The HGSOC spheroids represent the invasive and chemoresistant cellular fraction, which is impossible to investigate in conventional two-dimensional (2D) monolayer cell cultures lacking critical cell-to-cell and cell-extracellular matrix interactions. Three-dimensional (3D) HGSOC cultures, where cells aggregate and exhibit relevant interactions, offer a promising in vitro model of peritoneal metastasis and multicellular drug resistance. This review summarizes recent studies of HGSOC in 3D culture conditions and highlights the role of multicellular HGSOC spheroids and ascitic environment in HGSOC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, Dalian CN-116024, China
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia.
| |
Collapse
|
5
|
Wu Q, He X, Liu J, Ou C, Li Y, Fu X. Integrative evaluation and experimental validation of the immune-modulating potential of dysregulated extracellular matrix genes in high-grade serous ovarian cancer prognosis. Cancer Cell Int 2023; 23:223. [PMID: 37777759 PMCID: PMC10543838 DOI: 10.1186/s12935-023-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding therapeutic interventions. METHODS AND RESULTS Using univariate Cox regression analysis, we identified 71 ECM genes associated with prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer research. CONCLUSION The comprehensive evaluation of the ECM may help identify immune activation and assist patients in HGSOC and even pan-cancer in receiving proper therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Ruijin Er Road, Huangpu District, Shanghai, 200025, China.
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
6
|
Sasamoto N, Stewart PA, Wang T, Thompson ZJ, Yoder SJ, Hecht JL, Cleveland JL, Conejo‐Garcia J, Fridley BL, Terry KL, Tworoger SS. Associations between prediagnostic aspirin use and ovarian tumor gene expression. Cancer Med 2023; 12:18405-18417. [PMID: 37525619 PMCID: PMC10523980 DOI: 10.1002/cam4.6386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/25/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Aspirin use has been associated with reduced ovarian cancer risk, yet the underlying biological mechanisms are not fully understood. To gain mechanistic insights, we assessed the association between prediagnosis low and regular-dose aspirin use and gene expression profiles in ovarian tumors. METHODS RNA sequencing was performed on high-grade serous, poorly differentiated, and high-grade endometrioid ovarian cancer tumors from the Nurses' Health Study (NHS), NHSII, and New England Case-Control Study (n = 92 cases for low, 153 cases for regular-dose aspirin). Linear regression identified differentially expressed genes associated with aspirin use, adjusted for birth decade and cohort. False discovery rates (FDR) were used to account for multiple testing and gene set enrichment analysis was used to identify biological pathways. RESULTS No individual genes were significantly differentially expressed in ovarian tumors in low or regular-dose aspirin users accounting for multiple comparisons. However, current versus never use of low-dose aspirin was associated with upregulation of immune pathways (e.g., allograft rejection, FDR = 5.8 × 10-10 ; interferon-gamma response, FDR = 2.0 × 10-4 ) and downregulation of estrogen response pathways (e.g., estrogen response late, FDR = 4.9 × 10-8 ). Ovarian tumors from current regular aspirin users versus never users were also associated with upregulation in interferon pathways (FDR <1.5 × 10-4 ) and downregulation of multiple extracellular matrix (ECM) architecture pathways (e.g., ECM organization, 4.7 × 10-8 ). CONCLUSION Our results suggest low and regular-dose aspirin may impair ovarian tumorigenesis in part via enhancing adaptive immune response and decreasing metastatic potential supporting the likely differential effects on ovarian carcinogenesis and progression by dose of aspirin.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and GynecologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Paul A. Stewart
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Tianyi Wang
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Zachary J. Thompson
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Sean J. Yoder
- Molecular Genomics Core FacilityH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Jonathan L. Hecht
- Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - John L. Cleveland
- Department of Tumor BiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Jose Conejo‐Garcia
- Department of ImmunologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Brooke L. Fridley
- Department of Biostatistics and BioinformaticsH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Kathryn L. Terry
- Department of Obstetrics and GynecologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Shelley S. Tworoger
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| |
Collapse
|
7
|
Li J, Liang H, Xiao W, Wei P, Chen H, Chen Z, Yang R, Jiang H, Zhang Y. Whole-exome mutational landscape and molecular marker study in mucinous and clear cell ovarian cancer cell lines 3AO and ES2. BMC Cancer 2023; 23:321. [PMID: 37024829 PMCID: PMC10080944 DOI: 10.1186/s12885-023-10791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most lethal cancers in women because it is often diagnosed at an advanced stage. The molecular markers investigated thus far have been unsatisfactory. METHODS We performed whole-exome sequencing on the human ovarian cancer cell lines 3AO and ES2 and the normal ovarian epithelial cell line IOSE-80. Molecular markers of ovarian cancer were screened from shared mutation genes and copy number variation genes in the 6q21-qter region. RESULTS We found that missense mutations were the most common mutations in the gene (93%). The MUC12, FLG and MUC16 genes were highly mutated in 3AO and ES2 cells. Copy number amplification occurred mainly in 4p16.1 and 11q14.3, and copy number deletions occurred in 4q34.3 and 18p11.21. A total of 23 hub genes were screened, of which 16 were closely related to the survival of ovarian cancer patients. The three genes CCDC170, THBS2 and COL14A1 are most significantly correlated with the survival and prognosis of ovarian cancer. In particular, the overall survival of ovarian cancer patients with high CCDC170 gene expression was significantly prolonged (P < 0.001). The expression of CCDC170 in normal tissues was significantly higher than that in ovarian cancer tissues (P < 0.05), and its expression was significantly decreased in advanced ovarian cancer. Western blotting and immunofluorescence assays also showed that the expression of CCDC170 in ovarian cancer cells was significantly lower than that in normal cells (P < 0.001, P < 0.01). CONCLUSIONS CCDC170 is expected to become a new diagnostic molecular target and prognostic indicator for ovarian cancer patients, which can provide new ideas for the design of antitumor drugs.
Collapse
Affiliation(s)
- Jianxiong Li
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Huaguo Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wentao Xiao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Peng Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zexin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Ruihui Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Huan Jiang
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Yongli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
8
|
Secretome of Stromal Cancer-Associated Fibroblasts (CAFs): Relevance in Cancer. Cells 2023; 12:cells12040628. [PMID: 36831295 PMCID: PMC9953839 DOI: 10.3390/cells12040628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The cancer secretome reflects the assortment of proteins released by cancer cells. Investigating cell secretomes not only provides a deeper knowledge of the healthy and transformed state but also helps in the discovery of novel biomarkers. Secretomes of cancer cells have been studied in the past, however, the secretome contribution of stromal cells needs to be studied. Cancer-associated fibroblasts (CAFs) are one of the predominantly present cell populations in the tumor microenvironment (TME). CAFs play key role in functions associated with matrix deposition and remodeling, reciprocal exchange of nutrients, and molecular interactions and signaling with neighboring cells in the TME. Investigating CAFs secretomes or CAFs-secreted factors would help in identifying novel CAF-specific biomarkers, unique druggable targets, and an improved understanding for personalized cancer diagnosis and prognosis. In this review, we have tried to include all studies available in PubMed with the keywords "CAFs Secretome". We aim to provide a comprehensive summary of the studies investigating role of the CAF secretome on cancer development, progression, and therapeutic outcome. However, challenges associated with this process have also been addressed in the later sections. We have highlighted the functions and clinical relevance of secretome analysis in stromal CAF-rich cancer types. This review specifically discusses the secretome of stromal CAFs in cancers. A deeper understanding of the components of the CAF secretome and their interactions with cancer cells will help in the identification of personalized biomarkers and a more precise treatment plan.
Collapse
|
9
|
Mei S, Chen X, Wang K, Chen Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int 2023; 23:11. [PMID: 36698173 PMCID: PMC9875479 DOI: 10.1186/s12935-023-02854-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological malignancies with high morbidity and mortality. The peritoneum is one of the most common metastatic sites in ovarian cancer, involving large amounts of ascites. However, its mechanism is unclear. The peritoneal microenvironment composed of peritoneal effusion and peritoneum creates favorable conditions for ovarian cancer progression and metastasis. Here, we reviewed the peritoneal metastasis patterns and molecular mechanisms of ovarian cancer, as well as major components of the peritoneal microenvironment, peritoneal effusion, and immune microenvironment, and investigated the relationship between the peritoneal microenvironment and ovarian cancer metastasis.
Collapse
Affiliation(s)
- Shuangshuang Mei
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Xing Chen
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Kai Wang
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Yuxin Chen
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University (Enze Hospital, Taizhou Enze Medical Center Group), Tong Yang Road, Taizhou, 318053 Zhejiang China
| |
Collapse
|
10
|
Jin Y, Song X, Sun X, Ding Y. Up-regulation of collagen type V alpha 2 ( COL5A2) promotes malignant phenotypes in gastric cancer cell via inducing epithelial-mesenchymal transition (EMT). Open Med (Wars) 2023; 18:20220593. [PMID: 36712590 PMCID: PMC9843231 DOI: 10.1515/med-2022-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 01/19/2023] Open
Abstract
Recent studies have reported that collagen type V alpha 2 (COL5A2) is a hub gene and associated with the prognosis of gastric cancer (GC) patients, playing an important role in GC. In this study, we aim to fathom out the biological roles of COL5A2 and its relevant mechanism in GC. Oncomine, gene expression profiling interactive analysis, and UALCAN were used to explore the effects of COL5A2 on GC. Cell counting kit-8 assay, colony formation assay, and transwell assay were conducted to investigate the biological behaviors of GC cell lines AGS and SGC-7901. Quantitative reverse transcription polymerase chain reaction and western blot were performed to determine gene and protein expressions. COL5A2 expression was up-regulated and negatively correlated with survival percentage of GC patients. COL5A2 expression was notably elevated in high stage and high grade of GC. Down-regulation of COL5A2 inhibited proliferation, migration, and invasion of AGS and SGC-7901 cells. COL5A2 induced epithelial-mesenchymal transition (EMT) by promoting the expressions of mesenchymal markers (SNAI1, SNAI2, TWIST, VIM, and MMP2), thereby facilitating the malignant phenotypes of GC. COL5A2 plays an oncogenic role in GC and has potential to predict the progression and prognosis of GC patients.
Collapse
Affiliation(s)
- Yanfeng Jin
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xinyan Song
- Pharmacy of Laishan Branch, Yantai Yuhuangding Hospital, Yantai, China
| | - Xuankai Sun
- Department of Radiation, Yantai Yuhuangding Hospital, Yantai, China
| | - Yan Ding
- Department of Surgical Intensive Care Unit, Yantaishan Hospital, No. 10087 Keji Avenue, Laishan District, Yantai, Shandong 264003, China
| |
Collapse
|
11
|
Qian L, Chen Y, Peng M, Xia Y, Zhou T, Hong J, Ding S. The Importance of Marital Status in the Morbidity and Prognosis of Lung Metastasis in Newly Diagnosed Ovarian Cancer. J Cancer 2023; 14:1024-1038. [PMID: 37151400 PMCID: PMC10158508 DOI: 10.7150/jca.83017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
Objective: The study aimed to evaluate the risk factors for the morbidity and prognosis of lung metastases (LM) in patients with newly diagnosed ovarian cancer (OC), and further explore the important role of marital status. Materials and methods: Based on the Surveillance, Epidemiology, and End Results (SEER) dataset, OC patients from 2010 and 2019 were retrospectively analyzed. Logistic regression analysis and Kaplan-Meier method were applied to evaluate the vital factors of incidence and survival outcome in LM population. Cox regression analysis was performed to identify risk factors for the prognosis of OC patients with LM. The predictive potential was showed by two established nomograms and examined by the concordance index (C-index), calibration curves, the area under the curve (AUC), decision curve analyses (DCAs) and clinical impact curves (CICs). Results: There are 25,202 eligible OC patients were enrolled in the study, the morbidity of LM at 5.61%. Multivariable logistic regression models illustrated that chemotherapy (P<0.01), surgical treatment of bilateral or more areas (P<0.01), T stage (P<0.01), N1 stage (P<0.01), bone metastasis (P<0.01), brain metastasis (P<0.01) and liver metastasis (P<0.01) were all significantly connected with LM in OC. Multivariable Cox regression analyses illustrated that unmarried, radiotherapy, elder people and positive cancer antigen 125 (CA-125) were significantly associated with shorter survival time, while chemotherapy made contributions to improve survival. Our study found that marital relationships promoted LM and was associated with the better prognosis, while unmarried patients had the opposite results. With the further development of our research, the cross-action of social, economic and psychological factors together determined the great impact of marital status on the morbidity and prognosis of OC patients combined with LM. Finally, the stability of the models was proved by internal verification. Conclusion: The population-based cohort study provides references for guiding clinical screening and individualized treatment of OC patients with LM. Under the influence of society and economy, marital status is closely related to the morbidity and prognosis of OC, which can be an important direction to explore the risk of OC lung metastasis in the future.
Collapse
Affiliation(s)
- Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yixin Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingying Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tianye Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiana Hong
- Department of Nursing, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China
- ✉ Corresponding authors: Shuning Ding, ; Jiana Hong,
| | - Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- ✉ Corresponding authors: Shuning Ding, ; Jiana Hong,
| |
Collapse
|
12
|
Proteomics of High-Grade Serous Ovarian Cancer Models Identifies Cancer-Associated Fibroblast Markers Associated with Clinical Outcomes. Biomolecules 2022; 13:biom13010075. [PMID: 36671461 PMCID: PMC9855416 DOI: 10.3390/biom13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The tumor microenvironment has recently emerged as a critical component of high-grade serous ovarian cancer (HGSC) disease progression. Specifically, cancer-associated fibroblasts (CAFs) have been recognized as key players in various pro-oncogenic processes. Here, we use mass-spectrometry (MS) to characterize the proteomes of HGSC patient-derived CAFs and compare them to those of the epithelial component of HGSC to gain a deeper understanding into their tumor-promoting phenotype. We integrate our data with primary tissue data to define a proteomic signature of HGSC CAFs and uncover multiple novel CAF proteins that are prognostic in an independent HGSC patient cohort. Our data represent the first MS-based global proteomic characterization of CAFs in HGSC and further highlights the clinical significance of HGSC CAFs.
Collapse
|
13
|
Szczerba A, Śliwa A, Pieta PP, Jankowska A. The Role of Circulating Tumor Cells in Ovarian Cancer Dissemination. Cancers (Basel) 2022; 14:cancers14246030. [PMID: 36551515 PMCID: PMC9775737 DOI: 10.3390/cancers14246030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic ovarian cancer is the main reason for treatment failures and consequent deaths. Ovarian cancer is predisposed to intraperitoneal dissemination. In comparison to the transcoelomic route, distant metastasis via lymph vessels and blood is less common. The mechanisms related to these two modes of cancer spread are poorly understood. Nevertheless, the presence of tumor cells circulating in the blood of OC patients is a well-established phenomenon confirming the significant role of lymphatic and hematogenous metastasis. Thus, the detection of CTCs may provide a minimally invasive tool for the identification of ovarian cancer, monitoring disease progression, and treatment effectiveness. This review focuses on the biology of ovarian CTCs and the role they may play in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Pawel P. Pieta
- Department of Bionic and Experimental Medical Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
- Correspondence: ; Tel.: +48-618-547-190
| |
Collapse
|
14
|
The PDGF Family Is Associated with Activated Tumor Stroma and Poor Prognosis in Ovarian Cancer. DISEASE MARKERS 2022; 2022:5940049. [PMID: 36199822 PMCID: PMC9529473 DOI: 10.1155/2022/5940049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
The initiation and progression of cancer depend on the genetic alterations inherent in cancer cells, coupled with the mutual interplay of cancer cells with the surrounding tumor stroma. The platelet-derived growth factor (PDGF) family, as a mesenchymal growth factor, was involved in tumor progression by affecting the surrounding tumor stroma in some cancer types. However, the association of the PDGF family with the ovarian cancer stroma remains elusive. In our study, we first explored the expression pattern of the PDGF family using RNA expression profiles from public databases. We found that the PDGF family was highly expressed in tumor stroma compared with the corresponding epithelial components of ovarian cancer. In particular, PDGF receptors were weakly expressed in ovarian cancer tissues compared with the respective normal tissues; even in tumor mass, PDGF receptors were predominantly expressed by tumor stroma rather than ovarian cancer cells. Importantly, functional enrichment analyses and correlation analyses revealed that the PDGF family was strongly associated with activated stromal scores in ovarian cancer, including higher stromal scores, enriched pathways related to the extracellular matrix (ECM) organization and remodeling, elevated cancer-associated fibroblasts (CAFs) infiltration, and increased tumor-associated macrophages (TAMs) infiltration, especially macrophage M2. Besides, the positive correlations of the PDGF family with CAFs infiltration and macrophage M2 infiltration were observed in other various cancer types. Of note, the PDGF family was also involved in tumor progression-related pathways, such as transforming growth factor β (TGF-β) signaling, epithelial-mesenchymal transition (EMT), angiogenesis, and phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling. Higher expressions of PDGF receptors were also observed in ovarian cancer patients with venous or lymphatic invasion. Furthermore, we uncovered the prognostic prediction of the PDGF family in ovarian cancer and constructed a PDGF family-based risk prognosis model with a hazard ratio of 1.932 (95%confidence interval (CI) = 1.27–2.95) and P value < 0.01 (AUC = 0.782, 0.752 for 1 year and 2 years, respectively). Taken together, we demonstrated that ovarian cancers with high PDGF family expression biologically exhibit malignant progression behaviors as well as poor clinical survival, which is attributed to the activated tumor stroma in ovarian cancer.
Collapse
|
15
|
Microenvironment components and spatially resolved single-cell transcriptome atlas of breast cancer metastatic axillary lymph nodes. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1336-1348. [PMID: 36148946 PMCID: PMC9828062 DOI: 10.3724/abbs.2022131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an indicator of clinical prognosis, lymph node metastasis of breast cancer has drawn great attention. Many reports have revealed the characteristics of metastatic breast cancer cells, however, the effect of breast cancer cells on the microenvironment components of lymph nodes and spatial transcriptome atlas remains unclear. In this study, by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we investigate the transcriptional profiling of six surgically excised lymph node samples and the spatial organization of one positive lymph node. We identify the existence of osteoclast-like giant cells (OGC) which have high expressions of CD68 and CD163, the biomarkers of tumor-associated macrophages (TAMs). Through a spatially resolved transcriptomic method, we find that OGCs are scattered among metastatic breast cancer cells. In the lymph node microenvironment with breast cancer cell infiltration, TAMs are enriched in protumoral pathways including NF-κB signaling pathways and NOD-like receptor signaling pathways. Further subclustering demonstrates the potential differentiation trajectory in which macrophages develop from a state of active chemokine production to a state of active lymphocyte activation. This study is the first to integrate scRNA-seq and spatial transcriptomics in the tumor microenvironment of axillary lymph nodes, offering a systematic approach to delve into breast cancer lymph node metastasis.
Collapse
|
16
|
Li Y, Tian R, Liu J, Li J, Tan H, Wu Q, Fu X. Deciphering the immune landscape dominated by cancer-associated fibroblasts to investigate their potential in indicating prognosis and guiding therapeutic regimens in high grade serous ovarian carcinoma. Front Immunol 2022; 13:940801. [PMID: 36119108 PMCID: PMC9478207 DOI: 10.3389/fimmu.2022.940801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Limited immunotherapeutic effect in high-grade serous ovarian carcinoma (HGSOC) propels exploration of the mechanics behind this resistance, which may be partly elucidated by investigating characters of cancer-associated fibroblasts (CAFs), a significant population in HGSOC involved in shaping tumor immune microenvironment. Herein, leveraging gene expression data of HGSOC samples from The Cancer Genome Atlas and Gene Expression Omnibus datasets, we suggested that CAFs detrimentally affected the outcomes of HGSOC patients. Subsequently, we performed weighted gene co-expression network analysis (WGCNA) to identify a CAFs-related module and screened out seven hub genes from this module, all of which were positively correlated with the infiltration of immunosuppressive macrophages. As one of the hub genes, the expression of fibrillin 1 (FBN1) and its relevance to CD206 were further verified by immunohistochemistry staining in HGSOC samples. Meanwhile, we extracted genes that correlated well with CAF signatures to construct a CAFscore. The capacity of the CAFscore as an independent prognostic factor was validated by Cox regression analyses, and its relevance to components as well as signals in the tumor immune microenvironment was also investigated. Under the evaluation by the CAFscore, HGSOC patients with relatively high CAFscore had worse outcomes, activated mesenchymal signaling pathways, and immune checkpoint blockade (ICB) resistance signatures, which was consistent with the fact that non-responders in anti-PD-1 treatment cohorts tended to have higher CAFscore. Besides, the possibility of CAFscore to guide the selection of sensitive chemotherapeutic agents was explored. In conclusion, individualized assessment of the CAFscore could uncover the extent of stroma activation and immunosuppression and inform therapeutic strategies to improve the benefit of therapies.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Hong Tan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Qihui Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Qihui Wu, ; Hong Tan,
| |
Collapse
|
17
|
Integration of Transcriptome and Epigenome to Identify and Develop Prognostic Markers for Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3744466. [PMID: 36081667 PMCID: PMC9448543 DOI: 10.1155/2022/3744466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
Abstract
DNA methylation is a widely researched epigenetic modification. It is associated with the occurrence and development of cancer and has helped evaluate patients' prognoses. However, most existing DNA methylation prognosis models have not simultaneously considered the changes of the downstream transcriptome. Methods. The RNA-Sequencing data and DNA methylation omics data of ovarian cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Consensus Cluster Plus algorithm was used to construct the methylated molecular subtypes of the ovary. Lasso regression was employed to build a multi-gene signature. An independent data set was applied to verify the prognostic value of the signature. The Gene Set Variation Analysis (GSVA) was used to carry out the enrichment analysis of the pathways linked to the gene signature. The IMvigor 210 cohort was used to explore the predictive efficacy of the gene signature for immunotherapy response. Results. We distinguished ovarian cancer samples into two subtypes with different prognosis, based on the omics data of DNA methylation. Differentially expressed genes and enrichment analysis among subtypes indicated that DNA methylation was related to fatty acid metabolism and the extracellular matrix (ECM)-receptor. Furthermore, we constructed an 8-gene signature, which proved to be efficient and stable in predicting prognostics in ovarian cancer patients with different data sets and distinctive pathological characteristics. Finally, the 8-gene signature could predict patients' responses to immunotherapy. The polymerase chain reaction experiment was further used to verify the expression of 8 genes. Conclusion. We analyzed the prognostic value of the related genes of methylation in ovarian cancer. The 8-gene signature predicted the prognosis and immunotherapy response of ovarian cancer patients well and is expected to be valuable in clinical application.
Collapse
|
18
|
Tang H, Shan J, Liu J, Wang X, Wang F, Han S, Zhao X, Wang J. Molecular subtypes, clinical significance, and tumor immune landscape of angiogenesis-related genes in ovarian cancer. Front Oncol 2022; 12:995929. [PMID: 36106103 PMCID: PMC9464911 DOI: 10.3389/fonc.2022.995929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a physiological process, where new blood vessels are formed from pre-existing vessels through the mechanism called sprouting. It plays a significant role in supporting tumor growth and is expected to provide novel therapeutic ideas for treating tumors that are resistant to conventional therapies. We investigated the expression pattern of angiogenesis-related genes (ARGs) in ovarian cancer (OV) from public databases, in which the patients could be classified into two differential ARG clusters. It was observed that patients in ARGcluster B would have a better prognosis but lower immune cell infiltration levels in the tumor microenvironment. Then ARG score was computed based on differentially expressed genes via cox analysis, which exhibited a strong correlation to copy number variation, immunophenoscore, tumor mutation load, and chemosensitivity. In addition, according to the median risk score, patients were separated into two risk subgroups, of which the low-risk group had a better prognosis, increased immunogenicity, and stronger immunotherapy efficacy. Furthermore, we constructed a prognostic nomogram and demonstrated its predictive value. These findings help us better understand the role of ARGs in OV and offer new perspectives for clinical prognosis and personalized treatment.
Collapse
Affiliation(s)
- Haixia Tang
- Department of Gynecology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Jingsong Shan
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Suping Han
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| | - Jinxiu Wang
- Department of Gynecology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| |
Collapse
|
19
|
Ni X, Chen C, Cui G, Ding W, Liu J. Crosstalk of RNA Adenosine Modification-Related Subtypes, Establishment of a Prognostic Model, and Immune Infiltration Characteristics in Ovarian Cancer. Front Immunol 2022; 13:932876. [PMID: 35837397 PMCID: PMC9274011 DOI: 10.3389/fimmu.2022.932876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background Four RNA adenosine modifications, including m6A, m1A, alternative polyadenylation, and adenosine-to-inosine RNA editing, have been identified as potentially valuable in influencing colorectal carcinogenesis, immune infiltration, and response to drug therapy. However, the regulatory mechanisms and clinical significance of these four RNA modifications in ovarian cancer (OC) remain unknown. Methods We comprehensively described the transcriptional and genetic modifications of 26 RNA modification "writers" in OC and assessed the expression patterns. We identified two RNA modification subtypes using an unsupervised clustering approach. Subsequently, using differentially expressed genes (DEGs) in both subtypes, we calculated RNA modification "writer" scores (RMW scores) to characterize the RNA modifications of single OC patients. RMW score-related gene expression was investigated by qRT-PCR. We explored the correlation between RMW score and clinical features, immune infiltration, and drug sensitivity. We drew a nomogram to more intuitively and accurately describe the application value of the RMW score. Results We found that molecular alterations in "writers" are strongly related to prognostic and immune-infiltrating features in OC patients. We identified two different clusters of RNA modifications. According to the immune infiltration characteristics in the two RNA modification isoforms, cluster A and cluster B can correspond to "hot" and "cold" tumors, respectively. With the median RMW score, we classified the patients into high- and low-score subgroups. A low RMW score was associated with good patient prognosis and lower immune infiltration. In addition, a low RMW score equated with a higher cancer stem cell index and a lower tumor mutation burden, which to some extent affected the sensitivity of patients to therapeutic drugs. Seven RMW score-related gene expressions were investigated by qRT-PCR in three OC cell lines. Compared to previously known models, our established RMW score has higher accuracy in predicting patient survival. Conclusion A comprehensive analysis of four RNA modification patterns in OC reveals their potential value in OC prognosis, immune microenvironment, and drug sensitivity. These results could deepen our knowledge of RNA modification and yield fresh insights for new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoge Ni
- Department of Obstetrics and Gynecology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Can Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Chen Z, Jiang W, Li Z, Zong Y, Deng G. Immune-and Metabolism-Associated Molecular Classification of Ovarian Cancer. Front Oncol 2022; 12:877369. [PMID: 35646692 PMCID: PMC9133421 DOI: 10.3389/fonc.2022.877369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.
Collapse
Affiliation(s)
- Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Li J, Yue H, Li W, Zhu G, Zhu T, Chen R, Lu X. Bevacizumab confers significant improvements in survival for ovarian cancer patients with low miR-25 expression and high miR-142 expression. J Ovarian Res 2021; 14:166. [PMID: 34802430 PMCID: PMC8607647 DOI: 10.1186/s13048-021-00915-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lymphovascular space invasion (LVSI) is the first step of hematogenous metastasis. Exploration of the differential miRNA expression profiles between LVSI-positive and LVSI-negative ovarian cancer tissues may help to identify key miRNAs involved in the hematogenous metastasis of ovarian cancer. This study is aimed to identify microRNAs (miRNAs) that are differentially expressed between LVSI-positive and LVSI-negative ovarian cancer tissues, followed by exploring their association with bevacizumab response in ovarian cancer patients. METHODS The Cancer Genome Altas (TGGA) dataset was used to identify the differentially expressed miRNAs between LVSI-positive and LVSI-negative ovarian cancer tissues. The prognostic value of the differentially expressed miRNAs was determined using GSE140082 dataset. RESULTS We showed that miR-25 and miR-142 were differentially expressed between LVSI-positive and LVSI-negative ovarian cancer tumors. Kaplan-Meier analysis indicated that high miR-25 expression was associated with increased progression free survival (PFS) and extended overall survival (OS). Moreover, patients with low miR-25 expression benefited significantly from bevacizumab treatment in terms of PFS. A similar trend was observed in terms of OS though without reaching statistical significance. In contrast, no significant survival benefits from bevacizumab were observed in patients with high miR-25 expression in terms of PFS and OS. There was no significant correlation between miR-142 expression and PFS. In contrast, high miR-142 expression was associated with reduced OS. Moreover, patients with high miR-142 expression benefited significantly from bevacizumab treatment in terms of PFS and OS. However, bevacizumab treatment conferred no significant improvements in both PFS and OS in patients with low miR-142 expression. The nomogram for PFS indicated that miR-25 expression had a larger contribution to PFS than debulking status and bevacizumab treatment. And the nomogram for OS illustrated both miR-25 expression and miR-142 expression as sharing a larger contribution to OS than bevacizumab treatment and debulking status. CONCLUSION In conclusion, miR-25 expression correlates with a better PFS and OS in ovarian cancer. Patients with low miR-25 expression and high miR-142 expression could benefit from bevacizumab treatment significantly.
Collapse
Affiliation(s)
- Jun Li
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Huiran Yue
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Wenzhi Li
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Guohua Zhu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Tingting Zhu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Ruifang Chen
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
22
|
Zhong J, Wu H, Bu X, Li W, Cai S, Du M, Gao Y, Ping B. Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Front Genet 2021; 12:727392. [PMID: 34777463 PMCID: PMC8578022 DOI: 10.3389/fgene.2021.727392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor survival outcomes. However, the routine clinical features are not sufficient to accurately predict the prognosis of AML. The expression of hypoxia-related genes was associated with survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an 18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model that consisted of the HPM and clinical risk factors using machine learning methods. Both two models were able to effectively predict the survival of AML patients, which might contribute to improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO) categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal the underlying functions and pathways implicated in AML development. To explore hypoxia-related changes in the bone marrow immune microenvironment, we used CIBERSORT to calculate and compare the proportion of 22 immune cells between the two groups with high and low hypoxia-risk scores. Enrichment analysis and immune cell composition analysis indicated that the biological processes and molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone marrow play a role in the occurrence and development of AML, which might help us to evaluate several hypoxia-related metabolic and immune targets for AML therapy.
Collapse
Affiliation(s)
- Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meixue Du
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore S, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Litzi TJ, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Robinson EL, Odunsi K, Sood AK, Casablanca Y, Darcy KM, Shriver CD, Petricoin EF, Rao UN, Maxwell GL, Conrads TP. Extensive three-dimensional intratumor proteomic heterogeneity revealed by multiregion sampling in high-grade serous ovarian tumor specimens. iScience 2021; 24:102757. [PMID: 34278265 PMCID: PMC8264160 DOI: 10.1016/j.isci.2021.102757] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Enriched tumor epithelium, tumor-associated stroma, and whole tissue were collected by laser microdissection from thin sections across spatially separated levels of ten high-grade serous ovarian carcinomas (HGSOCs) and analyzed by mass spectrometry, reverse phase protein arrays, and RNA sequencing. Unsupervised analyses of protein abundance data revealed independent clustering of an enriched stroma and enriched tumor epithelium, with whole tumor tissue clustering driven by overall tumor "purity." Comparing these data to previously defined prognostic HGSOC molecular subtypes revealed protein and transcript expression from tumor epithelium correlated with the differentiated subtype, whereas stromal proteins (and transcripts) correlated with the mesenchymal subtype. Protein and transcript abundance in the tumor epithelium and stroma exhibited decreased correlation in samples collected just hundreds of microns apart. These data reveal substantial tumor microenvironment protein heterogeneity that directly bears on prognostic signatures, biomarker discovery, and cancer pathophysiology and underscore the need to enrich cellular subpopulations for expression profiling.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Sasha Makohon-Moore
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Tracy J. Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emma L. Robinson
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Uma N.M. Rao
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Thomas P. Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Road, Annandale, VA 22042, USA
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
- The John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| |
Collapse
|
24
|
Identification of a Novel Tumor Microenvironment Prognostic Signature for Advanced-Stage Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13133343. [PMID: 34283076 PMCID: PMC8268985 DOI: 10.3390/cancers13133343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of tumor microenvironment-related genes is known to be correlated with ovarian cancer patients’ prognosis. Immunotherapeutic targets are in part located in this complex cluster of cells and soluble factors. In our study, we constructed a prognostic 11-gene signature for advanced serous ovarian cancer from tumor microenvironment-related genes through lasso regression. The established risk score can quantify the prognosis of ovarian cancer patients more accurately and is able to predict the putative biological response of cancer samples to a programmed death ligand 1 blocking immunotherapy. This might empower the role of immunotherapy in ovarian cancer through its usage in future study protocols. Abstract (1) Background: The tumor microenvironment is involved in the growth and proliferation of malignant tumors and in the process of resistance towards systemic and targeted therapies. A correlation between the gene expression profile of the tumor microenvironment and the prognosis of ovarian cancer patients is already known. (2) Methods: Based on data from The Cancer Genome Atlas (379 RNA sequencing samples), we constructed a prognostic 11-gene signature (SNRPA1, CCL19, CXCL11, CDC5L, APCDD1, LPAR2, PI3, PLEKHF1, CCDC80, CPXM1 and CTAG2) for Fédération Internationale de Gynécologie et d’Obstétrique stage III and IV serous ovarian cancer through lasso regression. (3) Results: The established risk score was able to predict the 1-, 3- and 5-year prognoses more accurately than previously known models. (4) Conclusions: We were able to confirm the predictive power of this model when we applied it to cervical and urothelial cancer, supporting its pan-cancer usability. We found that immune checkpoint genes correlate negatively with a higher risk score. Based on this information, we used our risk score to predict the biological response of cancer samples to an anti-programmed death ligand 1 immunotherapy, which could be useful for future clinical studies on immunotherapy in ovarian cancer.
Collapse
|
25
|
Yang J, Fan Y, Xie B, Yang D. A Combination of RNA-Seq Analysis and Use of TCGA Database for Determining the Molecular Mechanism and Identifying Potential Drugs for GJB1 in Ovarian Cancer. Onco Targets Ther 2021; 14:2623-2633. [PMID: 33883906 PMCID: PMC8055374 DOI: 10.2147/ott.s303589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background There has been increasing evidence for the vital role played by gap junction protein beta-1 (GJB1) in ovarian cancer (OC) and for the possibility of this protein serving as a therapeutic target. However, the detailed mechanism of GJB1 in OC has not yet been clearly determined. The current study aimed to establish the molecular mechanisms of the involvement of GJB1 in OC and to further predict potential drugs targeting this protein. Methods To better understand the molecular mechanisms of the involvement of GJB1 in OC, RNA-Seq transcriptome sequencing was performed. Then, we carried out an RNA-Seq analysis to determine the genes differentially co-expressed with GJB1. Subsequently, we carried out bioinformation methods to study the upstream regulatory transcriptional factor (TF) of GJB1. Further, the binding of FOXA1 and GJB1 promoter was tested using ChIP-qPCR. Moreover, we performed pathway enrichment to identify the downstream regulatory mechanisms of GJB1. Furthermore, potential drugs targeting GJB1 were screened using AutoDock 4.2. Results We constructed the transcriptional factor FOXA1 regulatory network based on the AnimalTFDB, JASPAR, RNA-Seq, TCGA cohort and ChIP-qPCR to study the upstream regulation of GJB1. In addition, two key pathways for the involvement of GJB1 in OC-namely the "ECM-receptor interaction" and "focal adhesion" KEGG pathways-were identified. Furthermore, ZINC000005552022 was found in a screening to be a potentially promising drug targeting GJB1. Conclusion Our study results suggested that the transcriptional factor FOXA1 regulates the involvement of GJB1 in OC through ECM-receptor interaction and focal adhesion KEGG pathways, and that ZINC000005552022 may have promising potential as a drug targeting GJB1; this finding might be used to help accelerate drug development and improve the outcomes for patients with OC.
Collapse
Affiliation(s)
- Jie Yang
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China
| | - Yaqin Fan
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China
| | - Beibei Xie
- Faculty of Health, Yantai Nanshan University, Yantai, People's Republic of China
| | - Dan Yang
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China.,Faculty of Health, Yantai Nanshan University, Yantai, People's Republic of China
| |
Collapse
|
26
|
Li X, Song D, Liu H, Wang Z, Ma G, Yu M, Zhang Y, Zeng Y. Expression levels of VEGF-C and VEGFR-3 in renal cell carcinoma and their association with lymph node metastasis. Exp Ther Med 2021; 21:554. [PMID: 33850526 PMCID: PMC8027741 DOI: 10.3892/etm.2021.9986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Vascular endothelial growth factor-C (VEGF-C) and its receptor, VEGFR-3, are involved in lymphangiogenesis. The aim of the present study was to investigate the expression levels of VEGF-C and VEGFR-3 in RCC, and their association with lymphatic vessel density (LVD) and lymph node metastasis. The mRNA expression levels of VEGF-C in 40 RCC tissues and 10 normal renal tissues were determined by reverse transcription-semiquantitative PCR. The differential expression of VEGF-C and VEGFR-3 was examined by immunohistochemistry. Using an anti-D2-40 antibody as a lymphatic marker, the morphology and structure of lymphatic vessels in tissues was examined, and the LVD was calculated. VEGF-C mRNA expression in RCC tissues was higher than that in normal renal tissues, and VEGF-C mRNA expression in the lymph node metastasis group was higher than that in the non-lymph node metastasis group. The positive expression rate of VEGF-C and VEGFR-3 in RCC tissues was significantly higher than that in normal renal tissues. VEGF-C expression in the lymph node metastasis group was significantly higher than that in the non-lymph node metastasis group, and the positive expression of VEGF-C was associated with the clinical staging of RCC. In addition, there was a correlation between VEGF-C and VEGFR-3 expression in tumor cells. The LVD around the tumor was higher than that in the center of the tumor tissues and normal renal tissues, and it was closely associated with lymphatic invasion and lymph node metastasis. Overall, the current findings demonstrated that the VEGF-C/VEGFR-3 signaling pathway promoted lymphangiogenesis around the tumor and provided an approach for tumor lymphatic invasion and lymph node metastasis. Therefore, VEGFC and VEGFR-3 expression may serve an important role in the initiation and development of RCC.
Collapse
Affiliation(s)
- Xiuming Li
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Dianbin Song
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hui Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing 100081, P.R. China
| | - Zhiyong Wang
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Guang Ma
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Man Yu
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yu Zeng
- Department of Urology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
27
|
Wang G, Liu X, Wang D, Sun M, Yang Q. Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis. Front Oncol 2021; 11:636565. [PMID: 33842342 PMCID: PMC8025671 DOI: 10.3389/fonc.2021.636565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Metabolic reprogramming is an important biomarker of cancer. Metabolic adaptation driven by oncogenes allows tumor cells to survive and grow in a complex tumor microenvironment. The heterogeneity of tumor metabolism is related to survival time, somatic cell-driven gene mutations, and tumor subtypes. Using the heterogeneity of different metabolic pathways for the classification of gynecological pan-cancer is of great significance for clinical decision-making and prognosis prediction. Methods: RNA sequencing data for patients with ovarian, cervical, and endometrial cancer were downloaded from The Cancer Genome Atlas database. Genes related to glycolysis and cholesterol were extracted and clustered coherently by using ConsensusClusterPlus. The mutations and copy number variations in different subtypes were compared, and the immune scores of the samples were evaluated. The limma R package was used to identify differentially expressed genes between subtypes, and the WebGestaltR package (V0.4.2) was used to conduct Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology functional enrichment analyses. A risk score model was constructed based on multivariate Cox analysis. Prognostic classification efficiency was analyzed by using timeROC, and internal and external cohorts were used to verify the robustness of the model. Results: Based on the expression of 11 glycolysis-related genes and seven cholesterol-related genes, 1,204 samples were divided into four metabolic subtypes (quiescent, glycolysis, cholesterol, and mixed). Immune infiltration scores showed significant differences among the four subtypes. Survival analysis showed that the prognosis of the cholesterol subtype was better than that of the quiescent subtype. A nine-gene signature was constructed based on differentially expressed genes between the cholesterol and quiescent subtypes, and it was validated by using an independent cohort of the International Cancer Genome Consortium. Compared with existing models, our nine-gene signature had good prediction performance. Conclusion: The metabolic classification of gynecological pan-cancer based on metabolic reprogramming may provide an important basis for clinicians to choose treatment options, predict treatment resistance, and predict patients' clinical outcomes.
Collapse
Affiliation(s)
- Guangwei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofei Liu
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meige Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Zuo L, Li X, Tan Y, Zhu H, Xiao M. Prospective pathway signaling and prognostic values of MicroRNA-9 in ovarian cancer based on gene expression omnibus (GEO): a bioinformatics analysis. J Ovarian Res 2021; 14:29. [PMID: 33563317 PMCID: PMC7874475 DOI: 10.1186/s13048-021-00779-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Objective MicroRNAs (miRNAs) play a vital role in the development of ovarian cancer (OC). The aim of this study to investigate the prognostic value and potential signaling pathways of hsa-miR-9-5p (miR-9) in OC through literature review and bioinformatics methods. Methods The expression of miR-9 in OC was assessed using the public datasets from the Gene Expression Omnibus (GEO) database. And a literature review was also performed to investigate the correlation between miR-9 expression and the OC prognosis. Two mRNA datasets (GSE18520 and GSE36668) of OC tissues and normal ovarian tissues (NOTs) were downloaded from GEO to identify the differentially expressed genes (DEGs). The target genes of hsa-miR-9-5p (TG-miR-9-5p) were predicted using miRWALK3.0 and TargetScan. Then the gene overlaps between DEGs in OC and the predicted TG-miR-9-5p were confirmed using a Venn diagram. After that, overlapping genes were subjected to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape, and the impact of hub genes on OC prognosis was analyzed. Results It was found that OC patients with miR-9 low expression had poor prognosis. A total of 107 DEGs related to both OC and miR-9 were identified. Dozens of DEGs were enriched in developmental process, extracellular matrix structural constituent, cell junction, axon guidance. In the PPI network analysis, 5 of the top 10 hub genes was significantly associated with decreased overall survival of OC patients, namely FBN1 (HR = 1.64, P < 0.05), PRRX1 (HR = 1.76, P < 0.05), SMC2 (HR = 1.22, P < 0.05), SMC4 (HR = 1.31, P < 0.05), and VCAN (HR = 1.48, P < 0.05). Conclusion Low expression of miR-9 indicates poor prognosis of OC patients. MiR-9 plays a crucial role in the biological process of OC by binding to target genes, thus affecting the prognosis of patients.
Collapse
Affiliation(s)
- Li Zuo
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Xiaoli Li
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Yue Tan
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Hailong Zhu
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Mi Xiao
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China.
| |
Collapse
|
29
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
30
|
Li J, Yue H, Yu H, Lu X, Xue X. Patients with low nicotinamide N-methyltransferase expression benefit significantly from bevacizumab treatment in ovarian cancer. BMC Cancer 2021; 21:67. [PMID: 33446144 PMCID: PMC7809740 DOI: 10.1186/s12885-021-07785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of nicotinamide N-methyltransferase (NNMT) in ovarian cancer is still elusive. Our aim is to explore the expression of NNMT in ovarian cancer and to assess its association with patient prognosis and treatment response. METHODS We first analyzed the differential expression of NNMT among fallopian tube epithelium, primary ovarian cancers, metastatic ovarian cancers, and recurrent ovarian cancers using Gene Expression Ominus (GEO) database (GSE10971, GSE30587, GSE44104 and TCGA datasets). Then, we assessed the association of NNMT expression with clinical and molecular parameters using CSIOVDB database and GSE28739 dataset. Next, we evaluate the association of NNMT expression with the prognosis of ovarian cancer patients in both GSE9891 dataset and TCGA dataset. Finally, GSE140082 dataset was used to explore the association of NNMT expression with bevacizumab response. RESULTS NNMT expression was significantly elevated in lymphovascular space invasion (LVSI)-positive ovarian cancers compared with that in LVSI-negative ovarian cancers (TCGA dataset, P < 0.05), Moreover, increased expression of NNMT was associated with increased tumor stage, grade, and mesenchymal molecular subtype (CSIOVDB database). Survival analysis indicated that increased expression of NNMT was associated with a reduced OS in both GSE9891 dataset (HR: 2.28, 95%CI: 1.51-3.43, Log-rank P < 0.001) and TCGA dataset (HR: 1.55, 95%CI: 1.02-2.36, Log-rank P = 0.039). Multivariate analysis further confirmed the negative impact of NNMT expression on OS in ovarian cancer patients in those two datasets. Furthermore, the NNMT-related nomogram showed that NNMT shared a larger contribution to OS, compared with debulking status. More interestingly, bevacizumab conferred significant improvements in OS for patients with low NNMT expression (HR: 0.56, 95%CI: 0.31-0.99, Log-rank P = 0.049). In contrast, patients with high NNMT expression didn't benefit from bevacizumab treatment significantly (HR: 0.85, 95%CI: 0.48-1.49, Log-rank P = 0.561). NNMT expression was positively correlated with the expression of genes, LDHA and PGAM1, involved in Warburg effect. CONCLUSIONS In conclusion, NNMT expression is associated with the aggressive behavior of ovarian cancer, correlates with a poor prognosis, and is predictive of sensitivity to bevacizumab treatment.
Collapse
Affiliation(s)
- Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Huiran Yue
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Hailin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xiaohong Xue
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
31
|
Yue H, Li W, Chen R, Wang J, Lu X, Li J. Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol Oncol 2020; 160:530-538. [PMID: 33317907 DOI: 10.1016/j.ygyno.2020.11.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Periostin (POSTN) overexpression observed in various cancer types is correlated with metastasis and tumor progression. However, its effect on the crosstalk between ovarian cancer cells and cancer-associated fibroblasts (CAFs) remains elusive. This study aims to ascertain the role of CAF-derived POSTN in the ovarian cancer microenvironment. METHODS POSTN expression in high-grade serous ovarian cancer (HGSC) was detected through immunochemistry. Transwell assay was conducted to determine cell migration and invasion. POSTN was knocked down or overexpressed using lentiviral vectors. The potential downstream effects of POSTN were explored and verified by RNA sequencing and western blotting, respectively. In vitro metastatic capability of ovarian cancer cells regulated by POSTN was determined by indirect co-culture. RESULTS POSTN was highly enriched in HGSC stromal components, particularly in fibroblasts, while its overexpression was correlated with reduced overall survival (OS). CAF-derived POSTN functioned as a ligand for integrin αvβ3, fueling the migration and invasion of ovarian cancer cells by activating the PI3K/Akt pathway and inducing the epithelial-mesenchymal transition (EMT). Additionally, the pro-metastatic properties and the activation of fibroblasts induced by TGF-β1 partly relied on POSTN. CONCLUSIONS Stromal-derived POSTN drives the remodeling of the pro-metastatic microenvironment, which might be as a potential therapeutic target in patients with ovarian cancer.
Collapse
Affiliation(s)
- Huiran Yue
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wenzhi Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ruifang Chen
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jieyu Wang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai 200011, China.; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China..
| |
Collapse
|
32
|
Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, Zeng W, Ma L, Xie J. Immune-Related lncRNA to Construct Novel Signature and Predict the Immune Landscape of Human Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:937-947. [PMID: 33251044 PMCID: PMC7670249 DOI: 10.1016/j.omtn.2020.10.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The signature composed of immune-related long noncoding ribonucleic acids (irlncRNAs) with no requirement of specific expression level seems to be valuable in predicting the survival of patients with hepatocellular carcinoma (HCC). Here, we retrieved raw transcriptome data from The Cancer Genome Atlas (TCGA), identified irlncRNAs by co-expression analysis, and recognized differently expressed irlncRNA (DEirlncRNA) pairs using univariate analysis. In addition, we modified Lasso penalized regression. Then, we compared the areas under curve, counted the Akaike information criterion (AIC) values of 5-year receiver operating characteristic curve, and identified the cut-off point to set up an optimal model for distinguishing the high- or low-disease-risk groups among patients with HCC. We then reevaluated them from the viewpoints of survival, clinic-pathological characteristics, tumor-infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. 36 DEirlncRNA pairs were identified, 12 of which were included in a Cox regression model. After regrouping the patients by the cut-off point, we could more effectively differentiate between them based on unfavorable survival outcome, aggressive clinic-pathological characteristics, specific tumor immune infiltration status, low chemotherapeutics sensitivity, and highly expressed immunosuppressed biomarkers. The signature established by paring irlncRNA regardless of expression levels showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Liang
- Departments of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Corresponding author: Li Liang, Departments of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Yujun Gu
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Zhenhua Qi
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Haibo Qiu
- Department of Gastric and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaosong Yang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
- Corresponding author: Jingdun Xie, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
33
|
Wang H, Liu Z, Zhang G. FBN1 promotes DLBCL cell migration by activating the Wnt/β-catenin signaling pathway and regulating TIMP1. Am J Transl Res 2020; 12:7340-7353. [PMID: 33312371 PMCID: PMC7724331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
The heterogeneity of diffuse large B-cell lymphoma (DLBCL) acts as a main barrier to identify the genetic basis of the disease and the choice of treatment. Differentially expressed genes (DEGs) from three mRNA expression profile datasets were screened using GEO2R, and bioinformatics analysis was performed on the DEGs. A total of six upregulated and 13 downregulated DEGs were identified. Among these, two hub genes with a high degree of correlation were selected. FBN1 and TIMP1 were identified via STRING analysis and validated by GEPIA. FBN1 and TIMP1 were highly expressed in DLBCL tissues. FBN1 expression was significantly higher in patients of the Ann Arbor stage group (III-IV), with higher IPI score (3-5), and in the non-GCB group. Patients with high TIMP1 expression were more frequently associated with B symptoms, Ann Arbor stage (III-IV), higher IPI score (3-5) and were in the non-GCB group. Furthermore, FBN1 siRNA decreased FBN1 and TIMP1 expression and downregulation of TIMP1 attenuated TIMP1 expression but not of FBN1. Migration of DLBCL cells reduced when treated with either FBN1 or TIMP1 siRNA. Moreover, FBN1 or TIMP1 siRNA decreased the expression of Wnt target genes. Simultaneous overexpression of TIMP1 resulted in an increase in these proteins. This confirmed that both FBN1 and TIMP1 were positively associated with DLBCL progression. Further analysis revealed that FBN1/TIMP1 interaction could improve DLBCL cell migration and regulate the Wnt signaling pathway. Although the underlying mechanisms regarding the interaction between FBN1 and TIMP1 requires further clarification, they might be potential therapeutic targets for DLBCL therapy.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| | - Zhuogang Liu
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| | - Guojun Zhang
- Department of Hematology, Shenjing Hospital of China Medical University Shenyang, People's Republic of China
| |
Collapse
|
34
|
Pan X, Ma X. A Novel Six-Gene Signature for Prognosis Prediction in Ovarian Cancer. Front Genet 2020; 11:1006. [PMID: 33193589 PMCID: PMC7593580 DOI: 10.3389/fgene.2020.01006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most malignant tumor in the female reproductive tract. Although abundant molecular biomarkers have been identified, a robust and accurate gene expression signature is still essential to assist oncologists in evaluating the prognosis of OC patients. In this study, samples from 367 patients in The Cancer Genome Atlas (TCGA) database were subjected to mRNA expression profiling. Then, we used a gene set enrichment analysis (GSEA) to screen genes correlated with epithelial–mesenchymal transition (EMT) and assess their prognostic power with a Cox proportional regression model. Six genes (TGFBI, SFRP1, COL16A1, THY1, PPIB, BGN) associated with overall survival (OS) were used to construct a risk assessment model, after which the patients were divided into high-risk and low-risk groups. The six-gene signature was an independent prognostic biomarker of OS for OC patients based on the multivariate Cox regression analysis. In addition, the six-gene model was validated with samples from the Gene Expression Omnibus (GEO) database. In summary, we established a six-gene signature relevant to the prognosis of OC, which might become a therapeutic tool with clinical applications in the future.
Collapse
Affiliation(s)
- Xin Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Nie K, Zheng Z, Wen Y, Shi L, Xu S, Wang X, Zhou Y, Fu B, Li X, Deng Z, Pan J, Jiang X, Jiang K, Yan Y, Zhuang K, Huang W, Liu F, Li P. Construction and validation of a TP53-associated immune prognostic model for gastric cancer. Genomics 2020; 112:4788-4795. [PMID: 32858135 DOI: 10.1016/j.ygeno.2020.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that TP53 mutation impacts the patients' prognosis by regulating the gastric cancer (GC) immunophenotype. An immune prognostic signature (IPS) was constructed based on TP53 status. The effects of the IPS on the immune microenvironment of GC were analyzed. We also constructed a nomogram integrating the IPS and other clinical factors. An IPS was constructed in the TCGA cohort and validated in the meta-GEO cohort. TP53 mutation resulted in the downregulation of the immune response in GC. Concretely, high-risk patients were characterized by increased monocyte, macrophage M0 and T cell follicular helper infiltration; increased stromal score, ESTIMATE score and immune score; higher TIM3 and BTLA expression; and decreased dendritic cell and T cell CD4 memory-activated infiltration and tumor purity. The nomogram also showed good predictive performance. These results suggest that the IPS is an effective prognostic indicator for GC patients, which might provide a theoretical foundation for immunotherapy.
Collapse
Affiliation(s)
- Kechao Nie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China; Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhihua Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yi Wen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Laner Shi
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Shjie Xu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xueqi Wang
- Department of The Spleen and Stomach, Qingyuan Traditional Chinese Medicine Hospital, Qingyuan 511500, Guangdong, China
| | - Yingsheng Zhou
- University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Bin Fu
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan 528400, China
| | - Xiushen Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhitong Deng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jinglin Pan
- Department of Gastroenterology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Xiaotao Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kailin Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yanhua Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kunhai Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Wei Huang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Fengbin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Peiwu Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| |
Collapse
|
36
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Zheng J, Pang CH, Du W, Wang L, Sun LG, Xing ZY. An allele of rs619586 polymorphism in MALAT1 alters the invasiveness of meningioma via modulating the expression of collagen type V alpha (COL5A1). J Cell Mol Med 2020; 24:10223-10232. [PMID: 32720739 PMCID: PMC7520290 DOI: 10.1111/jcmm.15637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
The rs619586 polymorphism has been shown to alter the expression of MALAT1, which act as a competing endogenous RNA (ceRNA) against miR‐145. And miR‐145 was found to target COL5A1, the interaction between which was shown to be involved in the pathogenesis of invasive meningioma. In this study, we aimed to explore the effect of rs619586 polymorphism and its underlying molecular mechanism in invasive meningioma. Real‐time PCR and Western Blot analysis were used to study the differentiated expression of miR‐145, MALAT1 (metastasis‐associated lung adenocarcinoma transcript 1) and COL5A1 (collagen alpha‐1(V) chain) in tumour/serum samples genotyped as rs619586 AA, AG and GG. Computational analysis and luciferase reporter assay were also conducted to identify the regulatory relationship between miR‐145 and MALAT1/COL5A1. Meanwhile, expression of miR‐145 and COL5A1 in different cell treatment groups was measured to validate the results obtained from earlier experiments. As shown by the results and in tumour/serum samples genotyped as AA, AG and GG, the expression of both MALAT1 and COL5A1 was down‐regulated in a stepwise fashion, while the expression of miR‐145 was increased, suggesting a potential negative relationship between MALAT1/COL5A1 and miR‐145. Meanwhile, miR‐145 was shown to bind to MALAT1, while COL5A1 was identified as a virtual target gene of miR‐145. As a consequence, a MALAT1/miR‐145/COL5A1 molecular pathway was established based on the above results. In particular, with the presence of rs619586 A>G polymorphism, the expression of MALAT1 and COL5A1 was both reduced, leading to reduced invasiveness of meningioma.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Chang-He Pang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Du
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Lai-Guang Sun
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Zhen-Yi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
38
|
García P, Bizama C, Rosa L, Espinoza JA, Weber H, Cerda-Infante J, Sánchez M, Montecinos VP, Lorenzo-Bermejo J, Boekstegers F, Dávila-López M, Alfaro F, Leiva-Acevedo C, Parra Z, Romero D, Kato S, Leal P, Lagos M, Roa JC. Functional and genomic characterization of three novel cell lines derived from a metastatic gallbladder cancer tumor. Biol Res 2020; 53:13. [PMID: 32293552 PMCID: PMC7158131 DOI: 10.1186/s40659-020-00282-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. Results After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. Conclusions The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.
Collapse
Affiliation(s)
- Patricia García
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Rosa
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Applied Molecular and Cellular Biology PhD Program, Universidad de La Frontera, Temuco, Chile
| | - Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Javier Cerda-Infante
- Department of Hematology Oncology; Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marianela Sánchez
- Department of Hematology Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana P Montecinos
- Department of Hematology Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Justo Lorenzo-Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Marcela Dávila-López
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francisca Alfaro
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Leiva-Acevedo
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zasha Parra
- Cytogenetics Laboratory, Complejo Asistencial Dr. Sótero del Río, Santiago, Chile
| | - Diego Romero
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sumie Kato
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Marcela Lagos
- Department of Clinical Laboratory, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, Faculty of Medicine, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|