1
|
Biswal S, Mallick B. Unlocking the potential of signature-based drug repurposing for anticancer drug discovery. Arch Biochem Biophys 2024; 761:110150. [PMID: 39265695 DOI: 10.1016/j.abb.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Cancer is the leading cause of death worldwide and is often associated with tumor relapse even after chemotherapeutics. This reveals malignancy is a complex process, and high-throughput omics strategies in recent years have contributed significantly in decoding the molecular mechanisms of these complex events in cancer. Further, the omics studies yield a large volume of cancer-specific molecular signatures that promote the discovery of cancer therapy drugs by a method termed signature-based drug repurposing. The drug repurposing method identifies new uses for approved drugs beyond their intended initial therapeutic use, and there are several approaches to it. In this review, we discuss signature-based drug repurposing in cancer, how cancer omics have revolutionized this method of drug discovery, and how one can use the cancer signature data for repurposed drug identification by providing a step-by-step procedural handout. This modern approach maximizes the use of existing therapeutic agents for cancer therapy or combination therapy to overcome chemotherapeutics resistance, making it a pragmatic and efficient alternative to traditional resource-intensive and time-consuming methods.
Collapse
Affiliation(s)
- Sruti Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela-769008, Odisha, India.
| |
Collapse
|
2
|
van Ewijk R, Cleirec M, Herold N, le Deley MC, van Eijkelenburg N, Boudou-Rouquette P, Risbourg S, Strauss SJ, Palmerini E, Boye K, Kager L, Hecker-Nolting S, Marchais A, Gaspar N. A systematic review of recent phase-II trials in refractory or recurrent osteosarcoma: Can we inform future trial design? Cancer Treat Rev 2023; 120:102625. [PMID: 37738712 DOI: 10.1016/j.ctrv.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND/OBJECTIVE To analyze changes in recurrent/refractory osteosarcoma phase II trials over time to inform future trials in this population with poor prognosis. METHODS A systematic review of trials registered on trial registries between 01/01/2017-14/02/2022. Comparison of 98 trials identified between 2003 and 2016. Publication search/analysis for both periods, last update on 01/12/2022. RESULTS Between 2017 and 2022, 71 phase-II trials met our selection criteria (19 osteosarcoma-specific trials, 14 solid tumor trials with and 38 trials without an osteosarcoma-specific stratum). The trial number increased over time: 13.9 versus 7 trials/year (p = 0.06). Monotherapy remained the predominant treatment (62% vs. 62%, p = 1). Targeted therapies were increasingly evaluated (66% vs. 41%, P = 0.001). Heterogeneity persisted in the trial characteristics. The inclusion criteria were measurable disease (75%), evaluable disease (14%), and surgical remission (11%). 82% of the trials included pediatric or adolescent patients. Biomarker-driven trials accounted for 25% of the total trials. The survival endpoint use (rather than response) slightly increased (40% versus 31%), but the study H1/H0 hypotheses remained heterogeneous. Single-arm designs predominated over multiarm trials (n = 7). Available efficacy data on 1361 osteosarcoma patients in 58 trials remained disappointing, even though 21% of these trials were considered positive, predominantly those evaluating multi-targeted kinase inhibitors. CONCLUSION Despite observed changes in trial design and an increased number of trials investigating new therapies, high heterogeneity remained with respect to patient selection, study design, primary endpoints, and statistical hypotheses in recently registered phase II trials for osteosarcoma. Continued optimization of trial design informed by a deeper biological understanding should strengthen the development of new therapies.
Collapse
Affiliation(s)
- Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Morgane Cleirec
- Department of Pediatric Oncology, CHU Nantes, Nantes, France
| | - Nikolas Herold
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden, and Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marie-Cécile le Deley
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, U1018 ONCOSTAT, F-94085 Villejuif, France
| | | | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, Cochin Institute, INSERMU1016, Paris Cancer Institute, CARPEM, AP-HP, Paris, France
| | - Séverine Risbourg
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France
| | - Sandra J Strauss
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Norway
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Antonin Marchais
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
3
|
Sadıkoğulları BC, Şenel P, Çini N, Faysal AA, Odabaşoğlu M, Özdemir AD, Gölcü A. An Overview of Natural and Synthetic Phthalides Involved in Cancer Studies: Past, Present, and Future. ChemistrySelect 2022. [DOI: 10.1002/slct.202202004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bleda Can Sadıkoğulları
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Pelin Şenel
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Nejla Çini
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Abdullah Al Faysal
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Mustafa Odabaşoğlu
- Karadeniz Technical University Faculty of Sciences and Letters Department of Chemistry Trabzon 61080 Turkey
| | - Ayşe Daut Özdemir
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Ayşegül Gölcü
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| |
Collapse
|
4
|
Mehta RS, Saliba RM, Hayase E, Jenq RR, Abraham S, Rashid A, Rondon G, Al-Atrash G, Bashir Q, Hosing CM, Kebriaei P, Khouri I, Marin D, Nieto Y, Olson A, Oran B, Popat UR, Qazilbash MH, Ramdial J, Srour S, Champlin RE, Rezvani K, Shpall EJ, Alousi AM. Mycophenolate Mofetil: A Friend or a Foe with PTCy and Tacrolimus Prophylaxis in HLA-Matched donors? Transplant Cell Ther 2022; 28:500.e1-500.e10. [PMID: 35662592 DOI: 10.1016/j.jtct.2022.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Adapted from the haploidentical literature, post-transplantation cyclophosphamide (PTCy) is increasingly being used with HLA-matched donors, generally with a calcineurin inhibitor, such as tacrolimus (Tac) with or without mycophenolate mofetil (MMF). Owing to its immunosuppressive, potentially antitumor, and antimicrobial properties, MMF is an attractive drug; however, it remains unclear how much benefit is gained when used with PTCy/Tac. To assess that, we compared PTCy/Tac (n=242) to PTCy/Tac/MMF (n= 144) in recipients of HLA-matched donors. In multivariate analysis, the PTCy/Tac/MMF group had a significantly higher risk of grade II-IV acute graft-versus-host disease (GVHD; hazard ratio (HR) 2.1, 95% confidence interval (CI) 1.6-2.8, p<0.001), and steroid-refractory/dependent acute GVHD (HR 4.8, 95% CI 2.4-9.6, p<0.001), yet a significantly lower risk of relapse (HR 0.5, 95% CI, 0.3-0.9, p=0.009) and better progression-free survival (PFS; HR 0.7, 95% CI 0.5-0.9, p=0.04). There was no difference in the risk of grade III-IV acute GVHD, chronic GVHD, non-relapse mortality, or overall survival. MMF was associated with prolonged neutrophil engraftment by 2 days, and a higher risk of bacterial infections. In an exploratory stool microbiome analysis (n=16), we noted a higher relative abundance of β-glucuronidase-producing bacteria in the MMF group, which may have a role in the pathogenesis of MMF-related GVHD. Our data suggest that the addition of MMF to PTCy/Tac for HLA-matched donor HCT does not provide any advantage for GVHD prevention. Further studies are needed to decipher this mechanism, and understand its role with PTCy-based prophylaxis.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R Jenq
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan Abraham
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chitra M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Issa Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uday R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Kong H, Yu W, Chen Z, Li H, Ye G, Hong J, Xie Z, Chen K, Wu Y, Shen H. CCR9 initiates epithelial-mesenchymal transition by activating Wnt/β-catenin pathways to promote osteosarcoma metastasis. Cancer Cell Int 2021; 21:648. [PMID: 34863167 PMCID: PMC8642956 DOI: 10.1186/s12935-021-02320-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) patients with lung metastasis have poor prognoses, and effective therapeutic strategies for delaying or inhibiting the spread of lung metastasis from the primary OS site are lacking. Hence, it is critical to elucidate the underlying mechanisms of OS metastasis and to identify additional new effective treatment strategies for patients. Methods Differential expression and functional analyses were performed to identify key genes and relevant signaling pathways associated with OS lung metastasis. The expression of CCR9 in OS cell lines and tissues was measured by RT-qPCR, western blotting and immunohistochemistry. Cell migration and invasion were assessed by wound healing and Transwell Matrigel invasion assays, respectively. The regulatory relationship between CCR9 and the Wnt/β-catenin signaling pathway was further evaluated by rescue experiments. Results The expression of CCR9 was elevated in OS cell lines and patients with lung metastasis. CCR9 promoted MG63 and HOS cell migration and invasion by activating the Wnt/β-catenin signaling pathway. Furthermore, knockdown of CCR9 repressed epithelial–mesenchymal transition (EMT) by downregulating mesenchymal markers (N-cadherin and Vimentin) and EMT-associated transcription factors (twist and snail) and upregulating an epithelial marker (E-cadherin). Conclusions Our findings suggest that CCR9 promotes EMT by activating Wnt/β-catenin pathways to promote OS metastasis. CCR9 may be a promising therapeutic target to inhibit lung metastasis and serve as a novel prognostic marker for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02320-0.
Collapse
Affiliation(s)
- Haoran Kong
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Zhuning Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Haonan Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Jiacong Hong
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Keng Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, Guangdong, 518033, People's Republic of China.
| |
Collapse
|
6
|
Gaspar N, Campbell-Hewson Q, Gallego Melcon S, Locatelli F, Venkatramani R, Hecker-Nolting S, Gambart M, Bautista F, Thebaud E, Aerts I, Morland B, Rossig C, Canete Nieto A, Longhi A, Lervat C, Entz-Werle N, Strauss SJ, Marec-Berard P, Okpara CE, He C, Dutta L, Casanova M. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050) ☆. ESMO Open 2021; 6:100250. [PMID: 34562750 PMCID: PMC8477142 DOI: 10.1016/j.esmoop.2021.100250] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background We report results from the phase I dose-finding and phase II expansion part of a multicenter, open-label study of single-agent lenvatinib in pediatric and young adult patients with relapsed/refractory solid tumors, including osteosarcoma and radioiodine-refractory differentiated thyroid cancer (RR-DTC) (NCT02432274). Patients and methods The primary endpoint of phase I was to determine the recommended phase II dose (RP2D) of lenvatinib in children with relapsed/refractory solid malignant tumors. Phase II primary endpoints were progression-free survival rate at 4 months (PFS-4) for patients with relapsed/refractory osteosarcoma; and objective response rate/best overall response for patients with RR-DTC at the RP2D. Results In phase I, 23 patients (median age, 12 years) were enrolled. With lenvatinib 14 mg/m2, three dose-limiting toxicities (hypertension, n = 2; increased alanine aminotransferase, n = 1) were reported, establishing 14 mg/m2 as the RP2D. In phase II, 31 patients with osteosarcoma (median age, 15 years) and 1 patient with RR-DTC (age 17 years) were enrolled. For the osteosarcoma cohort, PFS-4 (binomial estimate) was 29.0% [95% confidence interval (CI) 14.2% to 48.0%; full analysis set: n = 31], PFS-4 by Kaplan–Meier estimate was 37.8% (95% CI 20.0% to 55.4%; full analysis set) and median PFS was 3.0 months (95% CI 1.8-5.4 months). The objective response rate was 6.7% (95% CI 0.8% to 22.1%). The patient with RR-DTC had a best overall response of partial response. Some 60.8% of patients in phase I and 22.6% of patients in phase II (with osteosarcoma) had treatment-related treatment-emergent adverse events of grade ≥3. Conclusions The lenvatinib RP2D was 14 mg/m2. Single-agent lenvatinib showed activity in osteosarcoma; however, the null hypothesis could not be rejected. The safety profile was consistent with previous tyrosine kinase inhibitor studies. Lenvatinib is currently being investigated in osteosarcoma in combination with chemotherapy as part of a randomized, controlled trial (NCT04154189), in pediatric solid tumors in combination with everolimus (NCT03245151), and as a single agent in a basket study with enrollment ongoing (NCT04447755). The recommended phase II dose of lenvatinib in children with relapsed/refractory solid malignant tumors is 14 mg/m2. This dose is equivalent to the recommended dose of 24 mg/day for single-agent lenvatinib in adults with DTC. Single-agent lenvatinib showed activity of interest in children and young adults with osteosarcoma. Based on this initial report, lenvatinib is currently being investigated in combination with chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- N Gaspar
- Department of Childhood and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Q Campbell-Hewson
- The Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - S Gallego Melcon
- Pediatric Oncology and Hematology Service, University Hospital Vall d'Hebron, Barcelona, Spain
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, University of Rome, Rome, Italy
| | - R Venkatramani
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, USA
| | - S Hecker-Nolting
- Department of Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart, Germany
| | - M Gambart
- Pediatric Hemato-Oncology Unit, CHU Toulouse - Hôpital des Enfants, URCP, Toulouse, France
| | - F Bautista
- Paediatric Haematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - E Thebaud
- Pediatric Oncology-Hematology and Immunology Department, CHU Nantes - Hôpital Mère-Enfant, Nantes, France
| | - I Aerts
- SIREDO Oncology Center, Institut Curie, PSL Research University, Paris, France
| | - B Morland
- Department of Paediatric Hematology/Oncology, Birmingham Children's Hospital, Birmingham, UK
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - A Canete Nieto
- Children's Oncology Unit, Pediatric Service, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - A Longhi
- Chemotherapy Service, Istituto Ortopedico Rizzoli IRCCS, Bologna, Italy
| | - C Lervat
- Pediatric and AYA Oncology Unit, Centre Oscar Lambret Lille, Lille, France
| | - N Entz-Werle
- Pediatric Onco-Hematology Unit, Chu Strasbourg-Hôpital Hautepierre, Strasbourg, France
| | - S J Strauss
- Clinical Research Facility, University College London Hospitals NHS Trust, London, UK
| | - P Marec-Berard
- Institute of Pediatric Hematology and Oncology, Centre Léon Bérard, Lyon, France
| | - C E Okpara
- Clinical Research, Oncology Business Group, Eisai Ltd., Hatfield, UK
| | - C He
- Biostatistics, Oncology Business Group, Eisai Inc., Woodcliff Lake, USA
| | - L Dutta
- Clinical Research, Oncology Business Group, Eisai Inc., Woodcliff Lake, USA
| | - M Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
Gaspar N, Campbell-Hewson Q, Huang J, Okpara CE, Bautista F. OLIE, ITCC-082: a Phase II trial of lenvatinib plus ifosfamide and etoposide in relapsed/refractory osteosarcoma. Future Oncol 2021; 17:4249-4261. [PMID: 34382412 DOI: 10.2217/fon-2021-0743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While survival rates for patients with relapsed/refractory osteosarcoma are low, kinase inhibitors have shown efficacy in its treatment. The multikinase inhibitor lenvatinib, plus ifosfamide and etoposide, showed antitumor activity in a Phase II study in patients with relapsed/refractory osteosarcoma. This Phase II randomized controlled trial (OLIE) will assess whether the combination of lenvatinib + ifosfamide + etoposide is superior to ifosfamide + etoposide alone in children, adolescents and young adults with relapsed/refractory osteosarcoma. The primary end point is progression-free survival; secondary and exploratory end points include, but are not limited to, overall survival, objective response rate, safety and tolerability, pharmacokinetic characterization of lenvatinib in the combination treatment, quality of life and quantification of baseline unresectable lesions that are converted to resectable.
Collapse
Affiliation(s)
- Nathalie Gaspar
- Department of Childhood & Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Jie Huang
- Biostatistics, Eisai Inc., Woodcliff Lake, NJ 07677, USA
| | | | | |
Collapse
|
8
|
Hirunsatitpron P, Hanprasertpong N, Noppakun K, Pruksakorn D, Teekachunhatean S, Koonrungsesomboon N. Mycophenolic acid and cancer risk in solid organ transplant recipients: Systematic review and meta-analysis. Br J Clin Pharmacol 2021; 88:476-489. [PMID: 34240462 DOI: 10.1111/bcp.14979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Mycophenolic acid (MPA) is an immunosuppressive drug commonly used for prophylaxis of graft rejection in solid organ transplant recipients. The main concern with the prolonged use of immunosuppressive drugs is the risk of developing cancer. However, it remains unclear whether the immunosuppressive regimens containing MPA confer an increased degree of cancer risk. The present study aimed to determine the association between MPA exposure and the incidence of cancer in solid organ transplant recipients. METHODS A systematic search was performed on the PubMed, EMBASE and Cochrane Library databases. Relevant articles that had findings on the incidence (or event) of cancer in cohorts with and without MPA exposure were retrieved for data extraction. A meta-analysis was conducted by means of the random-effects model, and the relative risk (RR) and its 95% confidence interval (95% CI) were used as a summary effect measure. RESULTS A total of 39 studies were eligible for inclusion, with 32 studies that enabled meta-analysis. MPA exposure was significantly associated with a lower risk of cancer when compared to azathioprine exposure (RR = 0.66, 95% CI = 0.53-0.81, P < .001) or no exposure to any additional treatments (RR = 0.85, 95% CI = 0.73-0.99, P = .04). There was no significant difference in cancer risk for the comparison between MPA exposure and mammalian target of rapamycin (mTOR) inhibitor exposure (RR = 1.54, 95% CI = 0.96-2.46, P = .07). CONCLUSIONS MPA exposure was not associated with an increased risk of cancer and may even be associated with a lower risk of cancer when compared to azathioprine or no treatment.
Collapse
Affiliation(s)
- Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand.,Master's Degree Program in Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand
| | | | - Kajohnsak Noppakun
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand.,Pharmacoepidemiology and Statistics Research Center, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Faculty of Medicine, Chiang Mai University, Thailand.,Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Thailand.,Biomedical Engineering Institute, Chiang Mai University, Thailand
| | | | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand.,Musculoskeletal Science and Translational Research Center, Faculty of Medicine, Chiang Mai University, Thailand
| |
Collapse
|
9
|
IMPDH2 and HPRT expression and a prognostic significance in preoperative and postoperative patients with osteosarcoma. Sci Rep 2021; 11:10887. [PMID: 34035425 PMCID: PMC8149691 DOI: 10.1038/s41598-021-90456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is one of the most aggressive bone tumors in children and adolescents. Development of effective therapeutic options is still lacking due to the complexity of the genomic background. In previous work, we applied a proteomics-guided drug repurposing to explore potential treatments for osteosarcoma. Our follow-up study revealed an FDA-approved immunosuppressant drug, mycophenolate mofetil (MMF) targeting inosine-5'-phosphate dehydrogenase (IMPDH) enzymes, has an anti-tumor effect that appeared promising for further investigation and clinical trials. Profiling of IMPDH2 and hypoxanthine-guanine phosphoribosyltransferase (HPRT), key purine-metabolizing enzymes, could deepen understanding of the importance of purine metabolism in osteosarcoma and provide evidence for expanded use of MMF in the clinic. In the present study, we investigated levels of IMPDH2, and HPRT in biopsy of 127 cases and post-chemotherapy tissues in 20 cases of high-grade osteosarcoma patients using immunohistochemical (IHC) analysis. Cox regression analyses were performed to determine prognostic significance of all enzymes. The results indicated that low levels of HPRT were significantly associated with a high Enneking stage (P = 0.023) and metastatic status (P = 0.024). Univariate and multivariate analyses revealed that patients with low HPRT expression have shorter overall survival times [HR 1.70 (1.01-2.84), P = 0.044]. Furthermore, high IMPDH2/HPRT ratios were similarly associated with shorter overall survival times [HR 1.67 (1.02-2.72), P = 0.039]. Levels of the enzymes were also examined in post-chemotherapy tissues. The results showed that high IMPDH2 expression was associated with shorter metastasis-free survival [HR 7.42 (1.22-45.06), P = 0.030]. These results suggest a prognostic value of expression patterns of purine-metabolizing enzymes for the pre- and post-chemotherapy period of osteosarcoma treatment.
Collapse
|
10
|
Silalai P, Pruksakorn D, Chairoungdua A, Suksen K, Saeeng R. Synthesis of propargylamine mycophenolate analogues and their selective cytotoxic activity towards neuroblastoma SH-SY5Y cell line. Bioorg Med Chem Lett 2021; 45:128135. [PMID: 34044119 DOI: 10.1016/j.bmcl.2021.128135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Twenty six propargylamine mycophenolate analogues were designed and synthesized from mycophenolic acid 1 employing a key step A3-coupling reaction. Their cytotoxic activity was examined against six cancer cell lines. Compounds 6a, 6j, 6t, 6u, and 6z exhibited selective cytotoxicity towards neuroblastoma (SH-SY5Y) cancer cells and were less toxic to normal cells in comparison to the lead compound, MPA 1 and a standard drug, ellipticine. Molecular docking results suggested that compound 6a is fit well in the key amino acid of three proteins (CDK9, EGFR, and VEGFR-2) as targets in cancer therapy. The propargylamine mycophenolate scaffold might be a valuable starting point for development of new neuroblastoma anticancer drugs.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Omics Center for Health Sciences, Faculty of Medicine, Chiang Mai University, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand; The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
11
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Osteosarcoma (OSA) is the most common primary tumor of bone, mainly affecting children and adolescents. Here we discuss recent advances in surgical and systemic therapies, and highlight potentially new modalities in preclinical evaluation and prognostication. RECENT FINDINGS The advent of neoadjuvant and adjuvant chemotherapy has markedly improved the disease-free recurrence and overall survival of OSA. However, treatment efficacy has been stagnant since the 1980s. This plateau has prompted preclinical and clinical research into in precision surgery, inhaled chemotherapy to increase pulmonary drug concentration without systemic side effects, and novel immunomodulators intended to block molecular pathways associated with OSA proliferation and metastasis. With the advent of novel surgical techniques and new forms and vectors for chemotherapy, it is hoped that OSA treatment outcomes will exceed their currently sustained plateau in the near future.
Collapse
Affiliation(s)
- Rebekah Belayneh
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mitchell S Fourman
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sumail Bhogal
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kurt R Weiss
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Benjanuwattra J, Chaiyawat P, Pruksakorn D, Koonrungsesomboon N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur J Pharmacol 2020; 887:173580. [PMID: 32949604 DOI: 10.1016/j.ejphar.2020.173580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil (MMF), an immunosuppressive drug approved for the prophylaxis of allograft rejection in transplant recipients. Recent advances in the role of the type II isoform of inosine-5'-monophosphate dehydrogenase (IMPDH2) in the tumorigenesis of various types of cancer have called for a second look of MPA, the first IMPDH2 inhibitor discovered a hundred years ago, to be repurposed as an anticancer agent. Over a half century, a number of in vitro and in vivo experiments have consistently shown anticancer activity of MPA against several cell lines obtained from different malignancies and murine models. However, a few clinical trials have been conducted to investigate its anticancer activity in humans, and most of which have shown unsatisfactory results. Understanding of available evidence and underlying mechanism of action is a key step to be done so as to facilitate further investigations of MPA to reach its full therapeutic potential as an anticancer agent. This article provides a comprehensive review of non-clinical and clinical evidence available to date, with the emphasis on the molecular mechanism of action in which MPA exerts its anticancer activities: induction of apoptosis, induction of cell cycle arrest, and alteration of tumor microenvironment. Future perspective for further development of MPA to be an anticancer agent is extensively discussed, with the aim of translating the anticancer property of MPA from bench to bedside.
Collapse
Affiliation(s)
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand; Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand; Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Thailand; Biomedical Engineering Institute, Chiang Mai University, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand.
| |
Collapse
|