1
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
2
|
Chandler AC, Yakoub M, Fujiwara T, Donlin LT, Purdue PE, Healey JH. Neoplastic synovial lining cells that coexpress podoplanin and CD90 overproduce CSF-1, driving tenosynovial giant cell tumor. J Orthop Res 2022; 40:1918-1925. [PMID: 34855235 PMCID: PMC9160208 DOI: 10.1002/jor.25216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Tenosynovial giant cell tumor (TCGT) is a rare neoplasm affecting the synovium of joints, bursae, and tendon sheaths. The overproduction of colony-stimulating factor-1 (CSF-1) by a minority of the tumor population works in a paracrine fashion to drive tumor growth. Pathology of the reactive, monocytic component has been well elucidated, whereas the populations of neoplastic cells and all the sources of CSF-1 overproduction are incompletely characterized. Podoplanin (PDPN), or gp38, is a cell surface glycoprotein that is expressed on fibroblast-like synovial cells and upregulated in rheumatoid arthritis and many cancers; it governs cell mobility, epithelial-mesenchymal transition, and other functions and is associated with lymphangiogenesis and poor prognosis in many solid tumors, which underscores its local and possible systemic effects. We found higher PDPN expression in TGCT than in internal controls of patients' healthy synovium. Flow cytometry partitioned PDPNhigh cells into PDPNhigh CD90+ and PDPNhigh CD14+ populations. Quantitative real-time polymerase chain reaction analysis of the PDPNhigh CD90+ cells revealed that CSF-1 expression was 10-fold higher than in PDPNhigh CD14+ cells. Therefore, we conclude that the lining fibroblast-like synovial cells, which express PDPNhigh CD90+ , are responsible for the overproduction of CSF-1 and for driving tumor growth.
Collapse
Affiliation(s)
- Andrew C. Chandler
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Touro College of Osteopathic Medicine, New York, NY, USA
| | - Mohamed Yakoub
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomohiro Fujiwara
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - John H. Healey
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
3
|
Lequerica-Fernández P, Suárez-Canto J, Rodriguez-Santamarta T, Rodrigo JP, Suárez-Sánchez FJ, Blanco-Lorenzo V, Domínguez-Iglesias F, García-Pedrero JM, de Vicente JC. Prognostic Relevance of CD4 +, CD8 + and FOXP3 + TILs in Oral Squamous Cell Carcinoma and Correlations with PD-L1 and Cancer Stem Cell Markers. Biomedicines 2021; 9:biomedicines9060653. [PMID: 34201050 PMCID: PMC8227658 DOI: 10.3390/biomedicines9060653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
This study investigates the relevance of tumor-infiltrating lymphocytes (TILs) in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis of stromal/tumoral CD4+, CD8+ and FOXP3+ TILs is performed in 125 OSCC patients. Potential relationships with the expression of tumoral PD-L1 and cancer stem cell (CSC) markers (NANOG, SOX2, OCT4, Nestin and Podoplanin (PDPN)) are assessed. CD4+ and CD8+ TILs are significantly associated with smoking and alcohol habits. CD4+ and CD8+ TILs show an inverse relationship with NANOG and SOX2 expression, and FOXP3+ TILs is significantly correlated with Nestin and PDPN expression. High infiltration of CD4+ and CD8+ TILs and a high tumoral CD8+/FOXP3+ ratio are significantly associated with tumors harboring positive PD-L1 expression. Infiltration of stromal/tumoral FOXP3+ TILs and a low stromal CD8+/FOXP3+ ratio are significantly associated with better disease-specific survival. Multivariate analysis reveals that the stromal CD8+/FOXP3+ TILs ratio is a significant independent prognostic factor. Regarding OSCC patient survival, the CD8+/FOXP3+ TILs ratio is an independent prognostic factor. TILs may act as biomarkers and potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Paloma Lequerica-Fernández
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
| | - Julián Suárez-Canto
- Department of Pathology, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Tania Rodriguez-Santamarta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
| | - Juan Pablo Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Faustino Julián Suárez-Sánchez
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain;
| | - Francisco Domínguez-Iglesias
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Juana María García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| | - Juan Carlos de Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| |
Collapse
|
4
|
Wang X, Liu B, Xu M, Jiang Y, Zhou J, Yang J, Gu H, Ruan C, Wu J, Zhao Y. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb Res 2021; 200:72-80. [PMID: 33548843 DOI: 10.1016/j.thromres.2021.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with cancer are at a high risk of venous thromboembolism (VTE), studies have shown that high expression of podoplanin (PDPN) in tumors is associated with increased risk of VTE. METHODS Two human malignant cell lines (NCI-H226 and C8161) expressing high levels of PDPN were selected to explore the role of platelet in cancer-associated venous thrombosis in vitro and in vivo. Immunohistochemical staining using anti-PDPN antibody was performed in the pulmonary carcinoma patients. RESULTS Both NCI-H226 and C8161 cells expressing high PDPN triggered platelet activation via CLEC-2 in vitro, which was abrogated by an anti-PDPN antibody SZ-168. Furthermore, the in vivo study revealed that injection of CHO-PDPN or C8161 in two mouse model of venous thrombosis activated platelets, increased platelet counts and enhanced thrombosis. More importantly, PDPN-enhanced thrombosis was reduced in mice treated with SZ168. A total of 63.3% tumor specimens stained positive for PDPN. High PDPN expression was associated with an increased risk of VTE and poor prognosis. CONCLUSIONS PDPN expression in tumors induced platelet activation and was related to a high risk of VTE via platelet activation. SZ168 inhibited PDPN-induced platelet activation in vitro and decreased the incidence of VTE in mice.
Collapse
Affiliation(s)
- Xia Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Biao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Mengqiao Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yizhi Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jundong Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Jun Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Haidi Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinchang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China; The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|