1
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Salvatori R, Manzoni M, Lepanto D, Stufano V, Pessina S, Zanetti C, Bassi F, Mazzarol G, Montagna E, Maffini F. A molecular reappraisal of matrix-producing breast metaplastic carcinoma highlighted by PLAG1 and MYC rearrangements. TUMORI JOURNAL 2022; 109:197-202. [PMID: 35361013 PMCID: PMC10070549 DOI: 10.1177/03008916221080190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Very little is currently known about molecular alteration of matrix-producing carcinoma of the breast. However, the morphological similarity with other neoplasm with a myxo-chondroid component is remarkable. In this pilot study we evaluated the molecular alterations involving PLAG1 and MYC genes in 12 cases of matrix producing carcinoma. Methods: We evaluated PLAG1 rearrangements as Break-Apart and Gene Copy Gain, and MYC as amplification and polysomy in 12 cases of matrix producing carcinoma using a FISH method. Results: Among the 12 cases of matrix producing carcinomas we found that the three cases harboring MYC amplification were all negative for PLAG1 break-apart; four cases with MYC polysomy were associated to PLAG1 break-apart and high Gene Copy Number; among four cases wild type for MYC, three showed a PLAG1- break-apart signal and of them two died with disease. One of the deceased patients showed an amplification of MYC with PLAG1- wild-type and the other showed a PLAG1 break-apart (6%) and a MYC wild-type. Conclusion: This is the first report to the best of our knowledge that shows a possible correlation between a matrix producing carcinoma with PLAG1 and MYC involvement in the development and progression of this kind of tumor. We can suppose that MYC amplification behaves in an aggressive way together with PLAG1- break-apart in the cases of matrix producing carcinoma presented here. The gene copy gain is a useful diagnostic tool in the case of difficult diagnosis because an increase was observed in more than 50% of cases.
Collapse
Affiliation(s)
- Rebecca Salvatori
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
- University “Statale” of Milan, School of Medicine, Milan, Italy
| | - Marco Manzoni
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Daniela Lepanto
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Viviana Stufano
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Simona Pessina
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Chiara Zanetti
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fabio Bassi
- Department of Breast Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giovanni Mazzarol
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Emilia Montagna
- Department of Breast Medical Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fausto Maffini
- Department of Surgical Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
3
|
Comparative transcriptional analyses of preclinical models and patient samples reveal MYC and RELA driven expression patterns that define the molecular landscape of IBC. NPJ Breast Cancer 2022; 8:12. [PMID: 35042871 PMCID: PMC8766434 DOI: 10.1038/s41523-021-00379-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive disease for which the spectrum of preclinical models was rather limited in the past. More recently, novel cell lines and xenografts have been developed. This study evaluates the transcriptome of an extended series of IBC preclinical models and performed a comparative analysis with patient samples to determine the extent to which the current models recapitulate the molecular characteristics of IBC observed clinically. We demonstrate that the IBC preclinical models are exclusively estrogen receptor (ER)-negative and of the basal-like subtype, which reflects to some extent the predominance of these subtypes in patient samples. The IBC-specific 79-signature we previously reported was retrained and discriminated between IBC and non-IBC preclinical models, but with a relatively high rate of false positive predictions. Further analyses of gene expression profiles revealed important roles for cell proliferation, MYC transcriptional activity, and TNFɑ/NFκB in the biology of IBC. Patterns of MYC expression and transcriptional activity were further explored in patient samples, which revealed interactions with ESR1 expression that are contrasting in IBC and nIBC and notable given the comparatively poor outcomes of ER+ IBC. Our analyses also suggest important roles for NMYC, MXD3, MAX, and MLX in shaping MYC signaling in IBC. Overall, we demonstrate that the IBC preclinical models can be used to unravel cancer cell intrinsic molecular features, and thus constitute valuable research tools. Nevertheless, the current lack of ER-positive IBC models remains a major hurdle, particularly since interactions with the ER pathway appear to be relevant for IBC.
Collapse
|
4
|
Ahmed SH, Espinoza-Sánchez NA, El-Damen A, Fahim SA, Badawy MA, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS One 2021; 16:e0250642. [PMID: 33901254 PMCID: PMC8075236 DOI: 10.1371/journal.pone.0250642] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, but aggressive entity of breast carcinoma with rapid dermal lymphatic invasion in young females. It is either poorly or misdiagnosed as mastitis because of the absence of a distinct lump. Small extracellular vesicles (sEVs) circulating in liquid biopsies are a novel class of minimally invasive diagnostic alternative to invasive tissue biopsies. They modulate cancer progression via shuttling their encapsulated cargo including microRNAs (miRNAs) into recipient cells to either trigger signaling or induce malignant transformation of targeted cells. Plasma sEVs < 200 nm were isolated using a modified cost-effective polyethylene glycol (PEG)-based precipitation method and compared to standard methods, namely ultracentrifugation and a commercial kit, where the successful isolation was verified by different approaches. We evaluated the expression levels of selected sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p using quantitative real PCR (qPCR). Relative to non-IBC, our qPCR data showed that sEV-derived miR-181b-5p and miR-222-3p were significantly upregulated, whereas let-7a-5p was downregulated in IBC patients. Interestingly, receiver operating characteristic (ROC) curves analysis revealed that diagnostic accuracy of let-7a-5p alone was the highest for IBC with an area under curve (AUC) value of 0.9188, and when combined with miR-222-3p the AUC was improved to 0.973. Further, 38 hub genes were identified using bioinformatics analysis. Together, circulating sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p serve as promising non-invasive diagnostic biomarkers for IBC.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Ahmed El-Damen
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Galala University, Suez, Egypt.,Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | |
Collapse
|