1
|
Liu D, Cao J, Ding X, Xu W, Yao X, Dai M, Tai Q, Shi M, Fei K, Xu Y, Su B. Disulfiram/copper complex improves the effectiveness of the WEE1 inhibitor Adavosertib in p53 deficient non-small cell lung cancer via ferroptosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167455. [PMID: 39111630 DOI: 10.1016/j.bbadis.2024.167455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Cancer cells lacking functional p53 exhibit poor prognosis, necessitating effective treatment strategies. Inhibiting WEE1, the G2/M cell cycle checkpoint gatekeeper, represents a promising approach for treating p53-deficient NSCLC. Here, we investigate the connection between p53 and WEE1, as well as explore a synergistic therapeutic approach for managing p53-deficient NSCLC. Our study reveals that p53 deficiency upregulates both protein levels and kinase activity of WEE1 by inhibiting its SUMOylation process, thereby enhancing the susceptibility of p53-deficient NSCLC to WEE1 inhibitors. Furthermore, we demonstrate that the WEE1 inhibitor Adavosertib induces intracellular lipid peroxidation, specifically in p53-deficient NSCLC cells, suggesting potential synergy with pro-oxidant reagents. Repurposing Disulfiram (DSF), an alcoholism medication used in combination with copper (Cu), exhibits pro-oxidant properties against NSCLC. The levels of WEE1 protein in p53-deficient NSCLC cells treated with DSF-Cu exhibit a time-dependent increase. Subsequent evaluation of the combination therapy involving Adavosertib and DSF-Cu reveals reduced cell viability along with smaller tumor volumes and lighter tumor weights observed in both p53-deficient cells and xenograft models while correlating with solute carrier family 7-member 11 (SLC7A11)/glutathione-regulated ferroptosis pathway activation. In conclusion, our findings elucidate the molecular interplay between p53 and WEE1 and unveil a novel synergistic therapeutic strategy for treating p53-deficient NSCLC.
Collapse
Affiliation(s)
- Di Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jingxue Cao
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xi Ding
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Wen Xu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaojuan Yao
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Mengyuan Dai
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Qidong Tai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Minxing Shi
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Ma ZY, Ding XJ, Zhu ZZ, Chen Q, Wang DB, Qiao X, Xu JY. Pt(iv) derivatives of cisplatin and oxaliplatin bearing an EMT-related TMEM16A/COX-2-selective dual inhibitor against colorectal cancer cells HCT116. RSC Med Chem 2024:d4md00327f. [PMID: 39185449 PMCID: PMC11342162 DOI: 10.1039/d4md00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer represents the over-expression of TMEM16A and COX-2, offering a promising therapeutic strategy. Two Pt(iv) conjugates derived from Pt(ii) drug (cisplatin or oxaliplatin) and niflumic acid, complexes 1 and 2, were designed and prepared to exert the positive impact of multiple biological targets of DNA/TMEM16A/COX-2 against colorectal cancer. Complex 2 afforded higher cytotoxicity than 1 and the combination of an intermediate of oxidized oxaliplatin and NFA against cancer cells A549, HeLa, MCF-7, and HCT116. Especially for colorectal cancer cells HCT116, 2 was significantly more toxic (22-fold) and selective to cancer cells against normal HUVEC cells (4-fold) than first-line oxaliplatin. The outstanding anticancer activity of 2 is partly attributed to its dramatic increase in cellular uptake, DNA damage, and apoptosis. Mechanistic studies indicated that 2 inhibited HCT116 cell metastasis by triggering TMEM16A, COX-2, and their downstream signaling pathways, including EGFR, STAT3, E-cadherin and N-cadherin.
Collapse
Affiliation(s)
- Zhong-Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Zhen-Zhen Zhu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Dong-Bo Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University Tianjin 300070 China
| |
Collapse
|
3
|
Abdulla MH, Alzailai AA, Vaali-Mohammed MA, Ahmad R, Fatima S, Zubaidi A, Traiki TB, Mahmood A, Hamoud Alrashoudi R, Khan Z. The platinum coordination complex inhibits cell invasion-migration and epithelial-to-mesenchymal transition by altering the TGF-β-SMAD pathway in colorectal cancer. Front Pharmacol 2023; 14:1178190. [PMID: 38027033 PMCID: PMC10679924 DOI: 10.3389/fphar.2023.1178190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: There is a steady increase in colorectal cancer (CRC) incidences worldwide; at diagnosis, about 20 percent of cases show metastases. The transforming growth factor-beta (TGF-β) signaling pathway is one of the critical pathways that influence the expression of cadherins allowing the epithelial-to-mesenchymal transition (EMT), which is involved in the progression of the normal colorectal epithelium to adenoma and metastatic carcinoma. The current study aimed to investigate the impact of a novel coordination complex of platinum (salicylaldiminato) PT(II) complex with dimethyl propylene linkage (PT-complex) on TGF-β and EMT markers involved in the invasion and migration of the human HT-29 and SW620 CRC cell lines. Methods: Functional study and wound healing assay showed PT-complex significantly reduced cell motility and the migration and invasion of CRC cell lines compared to the untreated control. Western blot performed in the presence and absence of TGF-β demonstrated that PT-complex significantly regulated the TGF-β-mediated altered expressions of EMT markers. Results and Discussion: PT-complex attenuated the migration and invasion by upregulating the protein expression of EMT-suppressing factor E-cadherin and suppressing EMT-inducing factors such as N-Cadherin and Vimentin. Moreover, PT-complex significantly suppressed the activation of SMAD3 in both CRC cell lines. Further, the microarray data analysis revealed differential expression of genes related to invasion and migration. In conclusion, besides displaying antiproliferative activity, the PT complex can decrease the metastasis of CRC cell lines by modulating TGF-β-regulated EMT markers. These findings provide new insight into TGF-β/SMAD signaling as the molecular mechanism involved in the antitumoral properties of novel PT-complex.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aminah Ahmad Alzailai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Zubaidi
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Reem Hamoud Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zarewa SA, Binobaid L, Sulaiman AAA, Sobeai HMA, Alotaibi M, Alhoshani A, Isab AA. Synthesis, Characterization, and Anticancer Activity of Phosphanegold(i) Complexes of 3-Thiosemicarbano-butan-2-one Oxime. Biomedicines 2023; 11:2512. [PMID: 37760953 PMCID: PMC10525815 DOI: 10.3390/biomedicines11092512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1-4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1-4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred.
Collapse
Affiliation(s)
- Sani A. Zarewa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Lama Binobaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Adam A. A. Sulaiman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Moureq Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Bazsefidpar P, Eftekhar E, Jahromi MZ, Nikpoor AR, Moghadam ME, Zolghadri S. In-vitro cytotoxicity and in-vivo antitumor activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand against breast cancer. J Inorg Biochem 2023; 241:112144. [PMID: 36706492 DOI: 10.1016/j.jinorgbio.2023.112144] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Platinum (Pt) derivatives are good candidates for discovering new anti-tumor agents. The present research aims to explore the in-vivo and in-vitro anticancer activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand (DMPG), [Pt(bpy)(13DMPG)]NO3 and [Pt(dach)(13DMPG)]NO3, against breast cancer cells. The present study was conducted to investigate the cytotoxic potential of these compounds (2-400 μM) compared to standard drugs (cisplatin, oxaliplatin, and carboplatin) on SKBR3 cells using the methyl thiazol-tetrazolium (MTT) assay. Furthermore, the gene expression changes of Bak, Bim, Bcl-2, Caspase-3, and Caspase-9 were carried out by real-time polymerase chain reaction (PCR), and flow cytometric analysis was performed to confirm the cell apoptosis in the presence of the compounds. For more validation, in-vivo anticancer activities of both compounds were investigated against breast transplanted tumors in the BALB/c mice model. The cytotoxic studies by MTT assay revealed the anti-proliferative potential of both derivatives. [Pt(dach)(13DMPG)]NO3 with an IC50 value of 15 μM, exhibited higher cytotoxicity against SKBR3 cells as compared to [Pt(bpy)(13DMPG)]NO3, oxaliplatin, and carboplatin. Based on the flow cytometry analysis, both derivatives demonstrated apoptotic effects. Also, real-time PCR analysis revealed an up-regulation of Bak, Bim, Bax, Caspases-3, and Caspase-9 genes and a significant reduction in Bcl-2 gene expression in treated cells with both compounds compared to the control group. In-vivo results validated in-vitro analysis and showed the anticancer activity of compounds against breast transplanted tumors in the BALB/c mice model. According to the results, [Pt(dach)(13DMPG)]NO3 displayed a significant anticancer activity.
Collapse
Affiliation(s)
- Parisa Bazsefidpar
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| |
Collapse
|
7
|
Vaali-Mohammed MA, Abdulla MH, Matou-Nasri S, Eldehna WM, Meeramaideen M, Elkaeed EB, El-Watidy M, Alhassan NS, Alkhaya K, Al Obeed O. The Anticancer Effects of the Pro-Apoptotic Benzofuran-Isatin Conjugate (5a) Are Associated With p53 Upregulation and Enhancement of Conventional Chemotherapeutic Drug Efficiency in Colorectal Cancer Cell Lines. Front Pharmacol 2022; 13:923398. [PMID: 36046830 PMCID: PMC9421242 DOI: 10.3389/fphar.2022.923398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to investigate in-depth a cytotoxic novel benzofuran-isatin conjugate (5a, 3-methyl-N'-(2-oxoindolin-3-ylidene)benzofuran-2-carbohydrazide) with promising potential anticancer activities in colorectal adenocarcinoma HT29 and metastatic colorectal cancer (CRC) SW620 cell lines. Thus, the primary cell events involved in tumorigenicity, tumor development, metastasis, and chemotherapy response were explored. Both CRC cell lines were exposed to different concentrations of Compound 5a and then subjected to real-time cell viability, migration, and invasion assays, colony formation and cytotoxicity assays, and flow cytometry for cell cycle analysis and apoptosis determination. Western blot and RT-qPCR were performed to assess the protein and transcript expression levels of epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis markers. We showed that the Compound 5a treatment exhibited anticancer effects through inhibition of HT29 and SW620 cell viability, migration, and invasion, in a dose-dependent manner, which were associated with the upregulation of the tumor suppressor p53. Compound 5a also inhibited the colony formation ability of HT29 and SW620 cells and reversed EMT markers E-cadherin and N-cadherin expression. CRC cell exposure to Compound 5a resulted in a cell cycle arrest at the G1/G0 phase in HT29 cells and at the G2/M phase in SW620 cells, along with the downregulation of cyclin A1 expression, described to be involved in the S phase entry. Furthermore, Compound 5a-induced apoptosis was associated with the downregulation of the anti-apoptotic Bcl-xl marker, upregulation of pro-apoptotic Bax and cytochrome c markers, and increased mitochondrial outer membrane permeability, suggesting the involvement of mitochondria-dependent apoptosis pathway. In addition, the combination studies of Compound 5a with the main conventional chemotherapeutic drugs 5-fluorouracil, irinotecan, and oxaliplatin showed a more potent cytotoxic effect in both CRC cells than a single treatment. In conclusion, our findings described the interesting in vitro anticancer properties of Compound 5a, shown to have possible antitumor, antimetastatic, and pro-apoptotic activities, with the enhancement of the cytotoxic efficiency of conventional chemotherapeutic drugs. In vivo studies are requested to confirm the promising anticancer potential of Compound 5a for CRC therapy.
Collapse
Affiliation(s)
- Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
- Department of Zoology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
- *Correspondence: Maha-Hamadien Abdulla,
| | - Sabine Matou-Nasri
- King Abdullah International Medical Research Center, Cell and Gene Therapy Group, Medical Genomics Research Department, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Badr, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - M. Meeramaideen
- Department of Zoology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohammed El-Watidy
- College of Medicine Research Center (CMRC), King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Noura S. Alhassan
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Khayal Alkhaya
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Omar Al Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Song Y, Yu J, Li L, Wang L, Dong L, Xi G, Lu YJ, Li Z. Luteolin impacts deoxyribonucleic acid repair by modulating the mitogen-activated protein kinase pathway in colorectal cancer. Bioengineered 2022; 13:10998-11011. [PMID: 35473479 PMCID: PMC9161897 DOI: 10.1080/21655979.2022.2066926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to investigate the effects of luteolin on colorectal cancer (CRC) and explore its underlying mechanism. HCT-116 and HT-29 cells were treated with luteolin, cisplatin, or selumetinib. The cell survival, cell proliferation, apoptosis and cell cycle distribution, and DNA damage were detected using Cell Counting Kit-8, colony formation, flow cytometry, and immunofluorescence staining analysis, respectively. Western blotting was used to detect the expression of apoptosis-related, cycle-related, DNA-damage-related, and mitogen-activated protein kinase (MAPK) pathway-related proteins. Luteolin showed inhibitory effects on cellular growth by reducing cell survival and proliferation, inducing apoptosis and DNA damage, and arresting the cell cycle in a concentration-dependent manner in HCT-116 and HT-29 cells. Meanwhile, luteolin increased the expression of pro-apoptotic proteins, p-CHK1 (central to the induction of cell cycle arrest), and DNA excision repair protein and decreased anti-apoptotic proteins, G2-M phase-related proteins, and DNA repair proteins. The combination of cisplatin and luteolin significantly decreased cell survival and increased the apoptosis rate of HCT-116 and HT-29 cells compared with cisplatin alone. Bioinformatic analysis using the Comparative Toxicogenomics Database and STITCH and MalaCards databases showed that the MAPK pathway is involved in the pharmacology of luteolin. Furthermore, western blotting demonstrated that luteolin plays an inhibitory role by suppressing the MAPK signaling pathway in CRC, which is enhanced when combined with selumetinib. Luteolin can also prevent tumourigenesis in CRC in vivo. In conclusion, luteolin suppressed cell proliferation, blocked the cell cycle, and induced DNA damage and apoptosis progression in CRC cells by mediating the MAPK pathway
Collapse
Affiliation(s)
- Yelin Song
- Department of cardiovascular medicine, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Jie Yu
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - LingLing Li
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - Lei Wang
- Digestive System Department, Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Liangle Dong
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - Guangmin Xi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,College of Life Science, Qi Lu Normal University, Jinan, Shandong, China
| | - Yun Jing Lu
- Medical Department, People's Hospital of Chengyang, Qingdao, Shandong, China
| | - Zuowei Li
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| |
Collapse
|
9
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
10
|
Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:ph14020133. [PMID: 33562293 PMCID: PMC7915149 DOI: 10.3390/ph14020133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these drugs. Among multifarious designs, monofunctional platinum(II) complexes with a general formula of [Pt(3A)Cl]+ (A: Ammonia or amine) stand out as a class of "non-traditional" anticancer agents hopeful to overcome the defects of current platinum drugs. This review aims to summarize the development of monofunctional platinum(II) complexes in recent years. They are classified into four categories: fluorescent complexes, photoactive complexes, targeted complexes, and miscellaneous complexes. The intention behind the designs is either to visualize the cellular distribution, or to reduce the side effects, or to improve the tumor selectivity, or inhibit the cancer cells through non-DNA targets. The information provided by this review may inspire researchers to conceive more innovative complexes with potent efficacy to shake off the drawbacks of platinum anticancer drugs.
Collapse
|
11
|
Zhang M, Wang Y, Jiang L, Song X, Zheng A, Gao H, Wei M, Zhao L. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:41. [PMID: 33494806 PMCID: PMC7830819 DOI: 10.1186/s13046-021-01844-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Background Adriamycin (ADR) resistance is one of the main obstacles to improving the clinical prognosis of breast cancer patients. Long noncoding RNAs (lncRNAs) can regulate cell behavior, but the role of these RNAs in the anti-ADR activity of breast cancer remains unclear. Here, we aim to investigate the imbalance of a particular long noncoding RNA, lncRNA CBR3 antisense RNA 1 (CBR3-AS1), and its role in ADR resistance. Methods Microarray analysis of ADR-resistant breast cancer cells was performed to identify CBR3-AS1. CCK-8 and colony formation assays were used to detect the sensitivity of breast cancer cells to ADR. Dual-luciferase reporter, RNA pulldown, IHC and western blot analyses were used to verify the relationship between the expression of CBR3-AS1, miRNA and target genes. For in vivo experiments, the effect of CBR3-AS1 on breast cancer resistance was observed in a xenograft tumor model. The role of CBR3-AS1 in influencing ADR sensitivity was verified by clinical breast cancer specimens from the TCGA, CCLE, and GDSC databases. Results We found that CBR3-AS1 expression was significantly increased in breast cancer tissues and was closely correlated with poor prognosis. CBR3-AS1 overexpression promoted ADR resistance in breast cancer cells in vitro and in vivo. Mechanistically, we identified that CBR3-AS1 functioned as a competitive endogenous RNA by sponging miR-25-3p. MEK4 and JNK1 of the MAPK pathway were determined to be direct downstream proteins of the CBR3-AS1/miR-25-3p axis in breast cancer cells. Conclusions In summary, our findings demonstrate that CBR3-AS1 plays a critical role in the chemotherapy resistance of breast cancer by mediating the miR-25-3p and MEK4/JNK1 regulatory axes. The potential of CBR3-AS1 as a targetable oncogene and therapeutic biomarker of breast cancer was identified. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01844-7.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Ang Zheng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China. .,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China. .,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China. .,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
12
|
Al-Khayal K, Vaali-Mohammed MA, Elwatidy M, Traiki TB, Al-Obeed O, Azam M, Khan Z, Abdulla M, Ahmad R. Correction to: A novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway. BMC Cancer 2020; 20:834. [PMID: 32873240 PMCID: PMC7466422 DOI: 10.1186/s12885-020-07245-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia
| | - Mohammed Elwatidy
- College of Medicine Research Center, King Saud University College of Medicine, Riyadh, 11472, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), 11472, Riyadh, Saudi Arabia.
| |
Collapse
|