1
|
Profiling and Bioinformatics Analyses of Differential Circular RNA Expression in Glioblastoma Multiforme Cells Under Hypoxia. J Mol Neurosci 2022; 72:2451-2463. [PMID: 36484975 DOI: 10.1007/s12031-022-02090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The hypoxia microenvironment is highly associated with GBM's malignant phenotypes. CircRNAs were reported involved in GBM's biological characteristics and regulated by HIF-1α. However, the differential expression profile and role of circRNAs in GBM cells under hypoxia are still unclear. The expression profiles of circRNAs in LN229 and T98G under hypoxia were explored via circRNA sequencing analysis. Those circRNAs significantly dysregulated both in LN229 and T98G and could be found in circBase were selected and validated by qRT-PCR, RNase R digestion reaction, and Sanger sequencing. Normal cell line and fresh GBM tissues were also used for qRT-PCR validation. The roles of differentially expressed circRNAs were evaluated by bioinformatics analyses. There were 672 dysregulated circRNAs in LN229 and 698 dysregulated circRNAs in T98G. GO analysis indicated that the alteration of circRNA expression related to GBM cell's biogenesis and metabolism. KEGG analysis demonstrated that TGF-β signaling pathway, HIF-1 signaling pathway, and metabolism-related signaling pathway were closely associated with differentially expressed circRNAs under hypoxia. These results were confirmed by GSEA analysis. The 6 selected and dysregulated circRNAs both in LN229 and T98G including hsa_circ_0000745, hsa_circ_0020093, hsa_circ_0020094, hsa_circ_0000943, hsa_circ_0004874, and hsa_circ_0002359 were validated by qRT-PCR. Inhibition of hsa_circ_0000745 inhibited GBM cell's proliferation, migration, and invasion. HIF-1α centered circRNA-miRNA-mRNA networks analysis showed that the 6 validated circRNAs could cross-talk with 11 related miRNAs. The circRNA expressions are dysregulated in GBM cell under hypoxia. The 6 validated circRNAs could participate in GBM's development and progression when hypoxia occurs. They might be the candidates for prognostic markers and adjuvant therapeutics of GBM in the future.
Collapse
|
2
|
Chen P, Nie ZY, Liu XF, Zhou M, Liu XX, Wang B. CircXRCC5, as a potential novel biomarker, promotes glioma progression via the miR-490-3p/XRCC5/CLC3 ceRNA network. Neuroscience 2022; 494:104-118. [DOI: 10.1016/j.neuroscience.2021.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/18/2022]
|
3
|
Zhang L, Wang M, Ren W, Li S, Zhi K, Gao L, Zheng J. Prognostic Significance of CircRNAs Expression in Oral Squamous Cell Carcinoma. Oral Dis 2022; 29:1439-1453. [PMID: 35286741 DOI: 10.1111/odi.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This systematic review was aimed to comprehensively evaluate the clinicopathological and prognostic value of dysregulated expression of circRNAs in OSCC. MATERIALS AND METHODS The research was carried out by searching mainstream electronic databases including PubMed, Embase, Web of Science, Scopus, LILACS and Cochrane Library to collect relevant studies on prognostic role of circRNAs in OSCC. Pooled hazard ratios (HRs) and odds ratios(ORs) with 95% confidence intervals(CIs) were calculated to assess the association between circRNAs expression, overall survival(OS), disease/recurrence/progression survival(DFS/RFS/PFS) and clinical parameters. RESULTS This research included 1813 patients from 26 selected articles. The pooled HR values(95% CIs) in OS were 2.38(1.92-2.93) for oncogenic circRNAs and 0.43(0.28-0.66) for tumor-suppressor circRNAs respectively, in DFS/RFS/PFS were 2.34(1.73-3.17). The meta-analysis on clinicopathology features showed higher level of oncogenic circRNAs is related to advanced TNM stage and tumor stage, worse histological differentiation, lymph node and distant metastasis, while enforced expression of tumor-suppressor circRNAs is related to inferior TNM stage tumor stage and lymphatic metastasis. CONCLUSION Our meta-analysis implies that circRNAs may be candidate biomarkers for the prognosis and clinicopathology of OSCC.
Collapse
Affiliation(s)
- Linfeng Zhang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Mingfei Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Chao F, Wang S, Zhang C, Han D, Xu G, Chen G. The Emerging Role of Circular RNAs in Prostate Cancer: A Systematic Review. Front Cell Dev Biol 2021; 9:681163. [PMID: 34386491 PMCID: PMC8353182 DOI: 10.3389/fcell.2021.681163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors that threaten the health of men. It is urgent to explore new molecular targets and develop new drugs for the treatment of prostate cancer. Circular RNAs (circRNAs) are aberrantly expressed in various malignant tumors. The dysregulated circRNAs are involved in the metastasis, tumor growth, drug resistance, and immunosuppression of malignant tumors. The present review systematically summarized publications concerning the biological implications of circRNAs in prostate cancer. The PubMed and Web of Science databases were used to retrieve publications concerning circRNAs and prostate cancer until June 16, 2021. The following keywords were used in the literature search: (circRNA OR circular RNA) AND prostate cancer. 73 publications were enrolled in the present systematic review to summarize the role of circRNAs in prostate cancer. The dysregulated and functional circRNAs were involved in the cell cycle, proliferation, migration, invasion, metastasis, drug resistance and radiosensitivity of prostate cancer. In addition, circRNAs could function through EVs and serve as prognostic and diagnostic biomarkers. Certain circRNAs were correlated with clinicopathological features of prostate cancer. A comprehensive review of the molecular mechanism of the tumorigenesis and progression of prostate cancer may contribute to the development of new therapies of prostate cancer in the future.
Collapse
Affiliation(s)
- Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|