1
|
Pandey A, Venkataraman S, Man SM, Talaulikar D. Protocol for the processing, cryopreservation, and biobanking of patient-derived cells and tissues. STAR Protoc 2024; 5:103287. [PMID: 39340776 PMCID: PMC11467654 DOI: 10.1016/j.xpro.2024.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/22/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Biobanking of patient-derived specimens offers unique opportunities for retrospective testing that could potentially contribute to diagnosing and evaluating clinical conditions, advancing personalized medicine and translational biomedical discovery. In this protocol, we detail the collection, processing, and cryopreservation of peripheral blood, bone marrow, and lymph nodes from patients with hematological malignancies. This protocol can be used for multiomics to gain cellular and molecular insights into blood cancers and to test the therapeutic potential of compounds for translational biomedical research. For complete details on the use and execution of this protocol, please refer to Lim et al.1 and Rijal et al.2.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, ACT 2605, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, ACT 2605, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Dipti Talaulikar
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, ACT 2605, Australia; Department of Diagnostic Genomics, ACT Pathology, Canberra, ACT 2605, Australia; School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
3
|
Pernes JI, Alsayah A, Tucci F, Bashford-Rogers RJM. Unravelling B cell heterogeneity: insights into flow cytometry-gated B cells from single-cell multi-omics data. Front Immunol 2024; 15:1380386. [PMID: 38707902 PMCID: PMC11067501 DOI: 10.3389/fimmu.2024.1380386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.
Collapse
Affiliation(s)
- Jane I. Pernes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Atheer Alsayah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Felicia Tucci
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| | - Rachael J. M. Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Zeng F, Zhang J, Jin X, Liao Q, Chen Z, Luo G, Zhou Y. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J Cell Physiol 2022; 237:2796-2807. [PMID: 35486480 DOI: 10.1002/jcp.30760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
CD38 is a multifunctional receptor and enzyme present on the surface of B lymphocytes, which can induce B lymphocytes proliferation and apoptosis by crosslinking related cytokines to affect the function of B cells, thus affecting immune regulation in humans and promoting tumorigenesis. The level of CD38 expression in B cells has become an important factor in the clinical diagnosis, treatment, and prognosis of malignant tumors and other related diseases. Therefore, studying the relationship between CD38 expression on the surface of B cells and the occurrence of the disease is of great significance for elucidating its association with disease pathogenesis and the clinical targeted therapy. In this paper, we review the effects of CD38 on B-cell activation, proliferation, and differentiation, and elaborate the functional role and mechanism of CD38 expression on B cells. We also summarize the relationship between the level of CD38 expression on the surface of B cells and the diagnosis, treatment, and prognosis of various diseases, as well as the potential use of targeted CD38 treatment for related diseases. This will provide an important theoretical basis for the scientific research and clinical diagnosis and treatment of B-cell-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Zhang
- Senile Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Jalali S, Ansell SM. Role of the Bone Marrow Niche in Supporting the Pathogenesis of Lymphoid Malignancies. Front Cell Dev Biol 2021; 9:692320. [PMID: 34395425 PMCID: PMC8355623 DOI: 10.3389/fcell.2021.692320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
While the bone marrow (BM) microenvironment is the primary location for nurturing the multipotent hematopoietic stem cells and developing the blood cells of either myeloid or lymphoid origin under normal physiological conditions, it could provide a supportive milieu for the proliferation of blood cancer cells. In fact, the multiple and complex direct cell-to-cell or indirect soluble factors-mediated interactions taking place among the BM cells of different origins are shown to play a significant role in tumorigenesis of hematological cancers. In the current review, we focus on lymphoid malignancies and highlight the novel insights surrounding the role of both cellular as well as non-cellular BM compartments in modulating hematopoiesis and promoting growth and proliferation of cancer cells across a variety of aggressive and indolent lymphoid malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Waldenstrom Macroglobulinemia. We also discuss the mechanisms of potential intervention and discuss their therapeutic impact in clinical settings.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|