1
|
Wei H, Huang X, Zhang Y, Jiang G, Ding R, Deng M, Wei L, Yuan H. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care. Front Neurol 2024; 15:1385013. [PMID: 38915793 PMCID: PMC11194386 DOI: 10.3389/fneur.2024.1385013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Aim The objective of this study is to develop accurate machine learning (ML) models for predicting the neurological status at hospital discharge of critically ill patients with hemorrhagic and ischemic stroke and identify the risk factors associated with the neurological outcome of stroke, thereby providing healthcare professionals with enhanced clinical decision-making guidance. Materials and methods Data of stroke patients were extracted from the eICU Collaborative Research Database (eICU-CRD) for training and testing sets and the Medical Information Mart for Intensive Care IV (MIMIC IV) database for external validation. Four machine learning models, namely gradient boosting classifier (GBC), logistic regression (LR), multi-layer perceptron (MLP), and random forest (RF), were used for prediction of neurological outcome. Furthermore, shapley additive explanations (SHAP) algorithm was applied to explain models visually. Results A total of 1,216 hemorrhagic stroke patients and 954 ischemic stroke patients from eICU-CRD and 921 hemorrhagic stroke patients 902 ischemic stroke patients from MIMIC IV were included in this study. In the hemorrhagic stroke cohort, the LR model achieved the highest area under curve (AUC) of 0.887 in the test cohort, while in the ischemic stroke cohort, the RF model demonstrated the best performance with an AUC of 0.867 in the test cohort. Further analysis of risk factors was conducted using SHAP analysis and the results of this study were converted into an online prediction tool. Conclusion ML models are reliable tools for predicting hemorrhagic and ischemic stroke neurological outcome and have the potential to improve critical care of stroke patients. The summarized risk factors obtained from SHAP enable a more nuanced understanding of the reasoning behind prediction outcomes and the optimization of the treatment strategy.
Collapse
Affiliation(s)
- Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xingshuai Huang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yixuan Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guowei Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Wang J, Tozzi F, Ashraf Ganjouei A, Romero-Hernandez F, Feng J, Calthorpe L, Castro M, Davis G, Withers J, Zhou C, Chaudhary Z, Adam M, Berrevoet F, Alseidi A, Rashidian N. Machine learning improves prediction of postoperative outcomes after gastrointestinal surgery: a systematic review and meta-analysis. J Gastrointest Surg 2024; 28:956-965. [PMID: 38556418 DOI: 10.1016/j.gassur.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Machine learning (ML) approaches have become increasingly popular in predicting surgical outcomes. However, it is unknown whether they are superior to traditional statistical methods such as logistic regression (LR). This study aimed to perform a systematic review and meta-analysis to compare the performance of ML vs LR models in predicting postoperative outcomes for patients undergoing gastrointestinal (GI) surgery. METHODS A systematic search of Embase, MEDLINE, Cochrane, Web of Science, and Google Scholar was performed through December 2022. The primary outcome was the discriminatory performance of ML vs LR models as measured by the area under the receiver operating characteristic curve (AUC). A meta-analysis was then performed using a random effects model. RESULTS A total of 62 LR models and 143 ML models were included across 38 studies. On average, the best-performing ML models had a significantly higher AUC than the LR models (ΔAUC, 0.07; 95% CI, 0.04-0.09; P < .001). Similarly, on average, the best-performing ML models had a significantly higher logit (AUC) than the LR models (Δlogit [AUC], 0.41; 95% CI, 0.23-0.58; P < .001). Approximately half of studies (44%) were found to have a low risk of bias. Upon a subset analysis of only low-risk studies, the difference in logit (AUC) remained significant (ML vs LR, Δlogit [AUC], 0.40; 95% CI, 0.14-0.66; P = .009). CONCLUSION We found a significant improvement in discriminatory ability when using ML over LR algorithms in predicting postoperative outcomes for patients undergoing GI surgery. Subsequent efforts should establish standardized protocols for both developing and reporting studies using ML models and explore the practical implementation of these models.
Collapse
Affiliation(s)
- Jane Wang
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Francesca Tozzi
- Department of General, HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Amir Ashraf Ganjouei
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Fernanda Romero-Hernandez
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Jean Feng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States
| | - Lucia Calthorpe
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Maria Castro
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Greta Davis
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Jacquelyn Withers
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Connie Zhou
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Zaim Chaudhary
- University of California, Berkeley, Berkeley, California, United States
| | - Mohamed Adam
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Frederik Berrevoet
- Department of General, HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Adnan Alseidi
- Department of Surgery, University of California, San Francisco, San Francisco, California, United States
| | - Nikdokht Rashidian
- Department of General, HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
3
|
Zhao G, Chen X, Zhu M, Liu Y, Wang Y. Exploring the application and future outlook of Artificial intelligence in pancreatic cancer. Front Oncol 2024; 14:1345810. [PMID: 38450187 PMCID: PMC10915754 DOI: 10.3389/fonc.2024.1345810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic cancer, an exceptionally malignant tumor of the digestive system, presents a challenge due to its lack of typical early symptoms and highly invasive nature. The majority of pancreatic cancer patients are diagnosed when curative surgical resection is no longer possible, resulting in a poor overall prognosis. In recent years, the rapid progress of Artificial intelligence (AI) in the medical field has led to the extensive utilization of machine learning and deep learning as the prevailing approaches. Various models based on AI technology have been employed in the early screening, diagnosis, treatment, and prognostic prediction of pancreatic cancer patients. Furthermore, the development and application of three-dimensional visualization and augmented reality navigation techniques have also found their way into pancreatic cancer surgery. This article provides a concise summary of the current state of AI technology in pancreatic cancer and offers a promising outlook for its future applications.
Collapse
Affiliation(s)
- Guohua Zhao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Xi Chen
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
- Department of Clinical integration of traditional Chinese and Western medicine, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Mengying Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
- Department of Clinical integration of traditional Chinese and Western medicine, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Yang Liu
- Department of Ophthalmology, First Hospital of China Medical University, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| |
Collapse
|
4
|
Karalis VD. The Integration of Artificial Intelligence into Clinical Practice. APPLIED BIOSCIENCES 2024; 3:14-44. [DOI: 10.3390/applbiosci3010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The purpose of this literature review is to provide a fundamental synopsis of current research pertaining to artificial intelligence (AI) within the domain of clinical practice. Artificial intelligence has revolutionized the field of medicine and healthcare by providing innovative solutions to complex problems. One of the most important benefits of AI in clinical practice is its ability to investigate extensive volumes of data with efficiency and precision. This has led to the development of various applications that have improved patient outcomes and reduced the workload of healthcare professionals. AI can support doctors in making more accurate diagnoses and developing personalized treatment plans. Successful examples of AI applications are outlined for a series of medical specialties like cardiology, surgery, gastroenterology, pneumology, nephrology, urology, dermatology, orthopedics, neurology, gynecology, ophthalmology, pediatrics, hematology, and critically ill patients, as well as diagnostic methods. Special reference is made to legal and ethical considerations like accuracy, informed consent, privacy issues, data security, regulatory framework, product liability, explainability, and transparency. Finally, this review closes by critically appraising AI use in clinical practice and its future perspectives. However, it is also important to approach its development and implementation cautiously to ensure ethical considerations are met.
Collapse
Affiliation(s)
- Vangelis D. Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
5
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
6
|
Shi Y, Zhang G, Ma C, Xu J, Xu K, Zhang W, Wu J, Xu L. Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China. BMC Med Inform Decis Mak 2023; 23:156. [PMID: 37563676 PMCID: PMC10416513 DOI: 10.1186/s12911-023-02253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Prediction tools for various intraoperative bleeding events remain scarce. We aim to develop machine learning-based models and identify the most important predictors by real-world data from electronic medical records (EMRs). METHODS An established database of surgical inpatients in Shanghai was utilized for analysis. A total of 51,173 inpatients were assessed for eligibility. 48,543 inpatients were obtained in the dataset and patients were divided into haemorrhage (N = 9728) and without-haemorrhage (N = 38,815) groups according to their bleeding during the procedure. Candidate predictors were selected from 27 variables, including sex (N = 48,543), age (N = 48,543), BMI (N = 48,543), renal disease (N = 26), heart disease (N = 1309), hypertension (N = 9579), diabetes (N = 4165), coagulopathy (N = 47), and other features. The models were constructed by 7 machine learning algorithms, i.e., light gradient boosting (LGB), extreme gradient boosting (XGB), cathepsin B (CatB), Ada-boosting of decision tree (AdaB), logistic regression (LR), long short-term memory (LSTM), and multilayer perception (MLP). An area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. RESULTS The mean age of the inpatients was 53 ± 17 years, and 57.5% were male. LGB showed the best predictive performance for intraoperative bleeding combining multiple indicators (AUC = 0.933, sensitivity = 0.87, specificity = 0.85, accuracy = 0.87) compared with XGB, CatB, AdaB, LR, MLP and LSTM. The three most important predictors identified by LGB were operative time, D-dimer (DD), and age. CONCLUSIONS We proposed LGB as the best Gradient Boosting Decision Tree (GBDT) algorithm for the evaluation of intraoperative bleeding. It is considered a simple and useful tool for predicting intraoperative bleeding in clinical settings. Operative time, DD, and age should receive attention.
Collapse
Affiliation(s)
- Ying Shi
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Chiye Ma
- Shanghai Institute of Computing Technology, 546 YuYuan Road, Shanghai, 200040, China
| | - Jiading Xu
- Shanghai Institute of Computing Technology, 546 YuYuan Road, Shanghai, 200040, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jianren Wu
- Shanghai Institute of Computing Technology, 546 YuYuan Road, Shanghai, 200040, China
| | - Liling Xu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
7
|
Huang YY, Lee ZH, Chang KC, Wu ZY, Lee CC, Tsou MH, Lin HM. Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy. RSC Adv 2023; 13:19079-19090. [PMID: 37362343 PMCID: PMC10288219 DOI: 10.1039/d3ra02068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu3+ ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd3+ ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 μg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min. The dual-targeted function and synergistic treatment of CPT, PTT, and PDT were also responsible for the 20% survival rate of the A549 cancer cells treated with 200 μg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 30 min. The results showed that rMSN-EuGd-Bi@CPT-HA-FA can effectively combine chemotherapy (through CPT), PDT, and PTT for cancer treatment.
Collapse
Affiliation(s)
- Yu-Ya Huang
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Zui-Harng Lee
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Kai-Chi Chang
- National Taiwan Ocean University, Bachelor Degree Program in Marine Biotechenology Taiwan
| | - Zhi-Yuan Wu
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Cheng-Chang Lee
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Min-Hsuan Tsou
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Hsiu-Mei Lin
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
- National Taiwan Ocean University, Center of Excellence for the Oceans Taiwan
- National Taiwan Ocean University, Center of Excellence for Ocean Engineering Taiwan
| |
Collapse
|
8
|
Lee W, Schwartz N, Bansal A, Khor S, Hammarlund N, Basu A, Devine B. A Scoping Review of the Use of Machine Learning in Health Economics and Outcomes Research: Part 2-Data From Nonwearables. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:2053-2061. [PMID: 35989154 DOI: 10.1016/j.jval.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Despite the increasing interest in applying machine learning (ML) methods in health economics and outcomes research (HEOR), stakeholders face uncertainties in when and how ML can be used. We reviewed the recent applications of ML in HEOR. METHODS We searched PubMed for studies published between January 2020 and March 2021 and randomly chose 20% of the identified studies for the sake of manageability. Studies that were in HEOR and applied an ML technique were included. Studies related to wearable devices were excluded. We abstracted information on the ML applications, data types, and ML methods and analyzed it using descriptive statistics. RESULTS We retrieved 805 articles, of which 161 (20%) were randomly chosen. Ninety-two of the random sample met the eligibility criteria. We found that ML was primarily used for predicting future events (86%) rather than current events (14%). The most common response variables were clinical events or disease incidence (42%) and treatment outcomes (22%). ML was less used to predict economic outcomes such as health resource utilization (16%) or costs (3%). Although electronic medical records (35%) were frequently used for model development, claims data were used less frequently (9%). Tree-based methods (eg, random forests and boosting) were the most commonly used ML methods (31%). CONCLUSIONS The use of ML techniques in HEOR is growing rapidly, but there remain opportunities to apply them to predict economic outcomes, especially using claims databases, which could inform the development of cost-effectiveness models.
Collapse
Affiliation(s)
- Woojung Lee
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Naomi Schwartz
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Aasthaa Bansal
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sara Khor
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Noah Hammarlund
- Department of Health Services Research, Management & Policy, University of Florida, Gainesville, FL, USA
| | - Anirban Basu
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Beth Devine
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Yin H, Zhang F, Yang X, Meng X, Miao Y, Noor Hussain MS, Yang L, Li Z. Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis. Front Oncol 2022; 12:973999. [PMID: 35982967 PMCID: PMC9380440 DOI: 10.3389/fonc.2022.973999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Purpose We evaluated the related research on artificial intelligence (AI) in pancreatic cancer (PC) through bibliometrics analysis and explored the research hotspots and current status from 1997 to 2021. Methods Publications related to AI in PC were retrieved from the Web of Science Core Collection (WoSCC) during 1997-2021. Bibliometrix package of R software 4.0.3 and VOSviewer were used to bibliometrics analysis. Results A total of 587 publications in this field were retrieved from WoSCC database. After 2018, the number of publications grew rapidly. The United States and Johns Hopkins University were the most influential country and institution, respectively. A total of 2805 keywords were investigated, 81 of which appeared more than 10 times. Co-occurrence analysis categorized these keywords into five types of clusters: (1) AI in biology of PC, (2) AI in pathology and radiology of PC, (3) AI in the therapy of PC, (4) AI in risk assessment of PC and (5) AI in endoscopic ultrasonography (EUS) of PC. Trend topics and thematic maps show that keywords " diagnosis ", “survival”, “classification”, and “management” are the research hotspots in this field. Conclusion The research related to AI in pancreatic cancer is still in the initial stage. Currently, AI is widely studied in biology, diagnosis, treatment, risk assessment, and EUS of pancreatic cancer. This bibliometrics study provided an insight into AI in PC research and helped researchers identify new research orientations.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Feixiong Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | | | - Li Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhaoshen Li, ; Li Yang,
| | - Zhaoshen Li
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- *Correspondence: Zhaoshen Li, ; Li Yang,
| |
Collapse
|
11
|
Schlanger D, Graur F, Popa C, Moiș E, Al Hajjar N. The role of artificial intelligence in pancreatic surgery: a systematic review. Updates Surg 2022; 74:417-429. [PMID: 35237939 DOI: 10.1007/s13304-022-01255-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI), including machine learning (ML), is being slowly incorporated in medical practice, to provide a more precise and personalized approach. Pancreatic surgery is an evolving field, which offers the only curative option for patients with pancreatic cancer. Increasing amounts of data are available in medicine: AI and ML can help incorporate large amounts of information in clinical practice. We conducted a systematic review, based on PRISMA criteria, of studies that explored the use of AI or ML algorithms in pancreatic surgery. To our knowledge, this is the first systematic review on this topic. Twenty-five eligible studies were included in this review; 12 studies with implications in the preoperative diagnosis, while 13 studies had implications in patient evolution. Preoperative diagnosis, such as predicting the malignancy of IPMNs, differential diagnosis between pancreatic cystic lesions, classification of different pancreatic tumours, and establishment of the correct management for each of these lesions, can be facilitated through different AI or ML algorithms. Postoperative evolution can also be predicted, and some studies reported prediction models for complications, including postoperative pancreatic fistula, while other studies have analysed the implications for prognosis evaluation (from predicting a textbook outcome, the risk of metastasis or relapse, or the mortality rate and survival). One study discussed the possibility of predicting an intraoperative complication-massive intraoperative bleeding. Artificial intelligence and machine learning models have promising applications in pancreatic surgery, in the preoperative period (high-accuracy diagnosis) and postoperative setting (prognosis evaluation and complication prediction), and the intraoperative applications have been less explored.
Collapse
Affiliation(s)
- D Schlanger
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania street Emil Isac no 13, 400023, Cluj-Napoca, Romania.,Surgery Department, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. O. Fodor", Cluj-Napoca, Romania. Street Croitorilor no 19-21, 400162, Cluj-Napoca, Romania
| | - F Graur
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania street Emil Isac no 13, 400023, Cluj-Napoca, Romania. .,Surgery Department, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. O. Fodor", Cluj-Napoca, Romania. Street Croitorilor no 19-21, 400162, Cluj-Napoca, Romania.
| | - C Popa
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania street Emil Isac no 13, 400023, Cluj-Napoca, Romania.,Surgery Department, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. O. Fodor", Cluj-Napoca, Romania. Street Croitorilor no 19-21, 400162, Cluj-Napoca, Romania
| | - E Moiș
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania street Emil Isac no 13, 400023, Cluj-Napoca, Romania.,Surgery Department, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. O. Fodor", Cluj-Napoca, Romania. Street Croitorilor no 19-21, 400162, Cluj-Napoca, Romania
| | - N Al Hajjar
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania street Emil Isac no 13, 400023, Cluj-Napoca, Romania.,Surgery Department, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. O. Fodor", Cluj-Napoca, Romania. Street Croitorilor no 19-21, 400162, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Sakamoto T, Goto T, Fujiogi M, Kawarai Lefor A. Machine learning in gastrointestinal surgery. Surg Today 2021; 52:995-1007. [PMID: 34559310 DOI: 10.1007/s00595-021-02380-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze "big data". In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current "big data" era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage "big data" and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan. .,Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Tadahiro Goto
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,TXP Medical Co. Ltd, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 114-8485, Japan
| | - Michimasa Fujiogi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Alan Kawarai Lefor
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, 3290498, Japan
| |
Collapse
|