1
|
Ye J, Chang T, Zhang X, Wei D, Wang Y. Mefenamic acid exhibits antitumor activity against osteosarcoma by impeding cell growth and prompting apoptosis in human osteosarcoma cells and xenograft mice model. Chem Biol Interact 2024; 393:110931. [PMID: 38423378 DOI: 10.1016/j.cbi.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The study investigates the anticancer activity of mefenamic acid against osteosarcoma, shedding light on its underlying mechanisms and therapeutic potential. Mefenamic acid exhibited robust inhibitory effects on the proliferation of MG-63, HOS, and H2OS osteosarcoma cells in a dose-dependent manner. Moreover, mefenamic acid induced cellular toxicity in MG63 cells, as evidenced by LDH leakage, reflecting its cytotoxic impact. Furthermore, mefenamic acid effectively suppressed the migration and invasion of MG-63 cells. Mechanistically, mefenamic acid induced apoptosis in MG-63 cells through mitochondrial depolarization, activation of caspase-dependent pathways, and modulation of the Bcl-2/Bax axis. Additionally, mefenamic acid promoted autophagy and inhibited the PI3K/Akt/mTOR pathway, further contributing to its antitumor effects. The molecular docking studies provide compelling evidence that mefenamic acid interacts specifically and strongly with key proteins in the PI3K/AKT/mTOR pathway, suggesting a novel mechanism by which mefenamic acid could exert anti-osteosarcoma effects. In vivo studies using a xenograft mouse model demonstrated significant inhibition of MG-63 tumor growth without adverse effects, supporting the translational potential of mefenamic acid as a safe and effective therapeutic agent against osteosarcoma. Immunohistochemistry staining corroborated the in vivo findings, highlighting mefenamic acid's ability to suppress tumor proliferation and inhibit the PI3K/AKT/mTOR pathway within the tumor microenvironment. Collectively, these results underscore the promising therapeutic implications of mefenamic acid in combating osteosarcoma, warranting further investigation for clinical translation and development.
Collapse
Affiliation(s)
- Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tianmin Chang
- Clinical Skills Training Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xihai Zhang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanhui Wang
- Department of Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Yang J, Jiang X, Jin KW, Shin S, Li Q. Bayesian hidden mark interaction model for detecting spatially variable genes in imaging-based spatially resolved transcriptomics data. Front Genet 2024; 15:1356709. [PMID: 38725485 PMCID: PMC11079231 DOI: 10.3389/fgene.2024.1356709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Recent technology breakthroughs in spatially resolved transcriptomics (SRT) have enabled the comprehensive molecular characterization of cells whilst preserving their spatial and gene expression contexts. One of the fundamental questions in analyzing SRT data is the identification of spatially variable genes whose expressions display spatially correlated patterns. Existing approaches are built upon either the Gaussian process-based model, which relies on ad hoc kernels, or the energy-based Ising model, which requires gene expression to be measured on a lattice grid. To overcome these potential limitations, we developed a generalized energy-based framework to model gene expression measured from imaging-based SRT platforms, accommodating the irregular spatial distribution of measured cells. Our Bayesian model applies a zero-inflated negative binomial mixture model to dichotomize the raw count data, reducing noise. Additionally, we incorporate a geostatistical mark interaction model with a generalized energy function, where the interaction parameter is used to identify the spatial pattern. Auxiliary variable MCMC algorithms were employed to sample from the posterior distribution with an intractable normalizing constant. We demonstrated the strength of our method on both simulated and real data. Our simulation study showed that our method captured various spatial patterns with high accuracy; moreover, analysis of a seqFISH dataset and a STARmap dataset established that our proposed method is able to identify genes with novel and strong spatial patterns.
Collapse
Affiliation(s)
- Jie Yang
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Xi Jiang
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX, United States
| | - Kevin Wang Jin
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Sunyoung Shin
- Department of Mathematics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
3
|
Guo T, Wang J, Pang M, Liu W, Zhang X, Fan A, Liu H, Liu Q, Wei T, Li C, Zhao X, Lu Y. Reprogramming and multi-lineage transdifferentiation attenuate the tumorigenicity of colorectal cancer cells. J Biol Chem 2024; 300:105534. [PMID: 38072050 PMCID: PMC10801221 DOI: 10.1016/j.jbc.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024] Open
Abstract
Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Tongtong Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanning Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ahui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengtao Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Qianqian Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China; Cytogenetics Laboratory, Beijing Institute of Human Genetics and Reproduction Medicine, Beijing, China.
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
5
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
7
|
Identification of Key Genes and miRNAs Affecting Osteosarcoma Based on Bioinformatics. DISEASE MARKERS 2022; 2022:1015593. [DOI: 10.1155/2022/1015593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Object. Osteosarcoma is an intractable malignant disease, and few therapeutic methods can thoroughly eradicate its focuses. This study attempted to investigate the related mechanism of osteosarcoma by bioinformatics methods. Methods. GSE70367 and GSE69470 were obtained from the GEO database. The differentially expressed genes (DEGs) and miRNAs were analyzed using the GEO2R tool and then visualized with R software. Moreover, the targets of the miRNAs in the DEGs were screened and then used for enrichment analysis. Besides, the STRING database and Cytoscape were applied to illustrate the protein-protein interaction network. RT-qPCR was performed to measure the expression of key genes and miRNAs. Western blot was applied to detect the signaling pathway. Results. 9 upregulated genes and 39 downregulated genes in GSE69470 were identified as the DEGs, and 31 upregulated genes and 56 downregulated genes in GSE70367 were identified as the DEGs. Moreover, 21 common genes were found in the DEGs of GSE70367 and GSE69470. The enrichment analysis showed that the common DEGs of GSE70367 and GSE69470 were related with cell development, covalent chromatin modification, and histone modification and involve in the regulation of MAPK, mTOR, and AMPK pathways. Besides, the miRNAs including miR-543, miR-495-3p, miR-433-3p, miR-381-3p, miR-301a-3p, miR-199b-5p, and miR-125b-5p were identified as the biomarkers of osteosarcoma. In addition, the target genes including HSPA5, PPARG, MAPK14, RAB11A, RAB5A, MAPK8, LEF1, HIF1A, CAV1, GS3KB, FOXO3, IGF1, and NFKBIA were identified as hub nodes. It was found that miR-301a-3p expression was decreased and mRNA expression of RAB5A and NFKBIA was increased in the pathological tissues. The AKT-PI3K-mTOR signaling pathway was activated in pathological tissues. Conclusion. In this study, 7 miRNAs and 13 hub genes were identified, which might be candidate markers. miR-301a-3p, RAB5A, and NFKBIA were abnormally expressed in osteosarcoma tissues.
Collapse
|
8
|
Zhang Y, Liu X, Wang Y, Lai S, Wang Z, Yang Y, Liu W, Wang H, Tang B. The m 6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol Cancer 2022; 21:174. [PMID: 36056355 PMCID: PMC9438157 DOI: 10.1186/s12943-022-01647-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is a major factor contributing to the poor prognosis of patients with pancreatic cancer, and cancer stemness is one of the most crucial factors associated with chemoresistance and a very promising direction for cancer treatment. However, the exact molecular mechanisms of cancer stemness have not been completely elucidated. Methods m6A-RNA immunoprecipitation and sequencing were used to screen m6A-related mRNAs and lncRNAs. qRT-PCR and FISH were utilized to analyse DDIT4-AS1 expression. Spheroid formation, colony formation, Western blot and flow cytometry assays were performed to analyse the cancer stemness and chemosensitivity of PDAC cells. Xenograft experiments were conducted to analyse the tumour formation ratio and growth in vivo. RNA sequencing, Western blot and bioinformatics analyses were used to identify the downstream pathway of DDIT4-AS1. IP, RIP and RNA pulldown assays were performed to test the interaction between DDIT4-AS1, DDIT4 and UPF1. Patient-derived xenograft (PDX) mouse models were generated to evaluate chemosensitivities to GEM. Results DDIT4-AS1 was identified as one of the downstream targets of ALKBH5, and recruitment of HuR onto m6A-modified sites is essential for DDIT4-AS1 stabilization. DDIT4-AS1 was upregulated in PDAC and positively correlated with a poor prognosis. DDIT4-AS1 silencing inhibited stemness and enhanced chemosensitivity to GEM (Gemcitabine). Mechanistically, DDIT4-AS1 promoted the phosphorylation of UPF1 by preventing the binding of SMG5 and PP2A to UPF1, which decreased the stability of the DDIT4 mRNA and activated the mTOR pathway. Furthermore, suppression of DDIT4-AS1 in a PDX-derived model enhanced the antitumour effects of GEM on PDAC. Conclusions The ALKBH5-mediated m6A modification led to DDIT4-AS1 overexpression in PDAC, and DDIT-AS1 increased cancer stemness and suppressed chemosensitivity to GEM by destabilizing DDIT4 and activating the mTOR pathway. Approaches targeting DDIT4-AS1 and its pathway may be an effective strategy for the treatment of chemoresistance in PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01647-0.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Department of Genaral Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xiaomeng Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Yan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Shihui Lai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiqian Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yudie Yang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Wenhui Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
9
|
Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G, Shen JN. Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int 2021; 21:706. [PMID: 34953496 PMCID: PMC8709946 DOI: 10.1186/s12935-021-02411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Osteosarcoma is the most common primary bone tumor in children and adolescents. However, some patients with osteosarcoma develop resistance to chemotherapy, leading to a poor clinical prognosis. Hence, effective therapeutic agents that can improve the response to chemotherapy drugs to improve the prognosis of patients with osteosarcoma are urgently needed. Cordycepin has recently emerged as a promising antitumor drug candidate. This study aims to explore the effect of cordycepin in suppressing osteosarcoma in vivo and in vitro and the synergistic effect of cordycepin combined with cisplatin and to demonstrate the underlying molecular mechanism. Methods CCK-8 assay was performed to investigate the inhibition effect of cordycepin combined with cisplatin in osteosarcoma cell lines. The colony formation and invasion abilities were measured by colony formation assay and Transwell assay. Osteosarcoma cells apoptosis was detected by flow cytometry. Western blot analysis were used to detect the expression of cell apoptosis-related proteins and AMPK and AKT/mTOR signaling pathway-related proteins. Finally, we performed the in vivo animal model to further explore whether cordycepin and cisplatin exert synergistic antitumor effects. Results Notably, we found that treatment with cordycepin inhibited cell proliferation, invasion, and induced apoptosis in osteosarcoma cells in vitro and in vivo. Moreover, the combination of cordycepin and cisplatin led to marked inhibition of osteosarcoma cell proliferation and invasion and promoted osteosarcoma cell apoptosis in vitro and in vivo. Mechanistically, we demonstrated that cordycepin enhanced the sensitivity of osteosarcoma cells to cisplatin by activating AMPK and inhibiting the AKT/mTOR signaling pathway. Conclusions In brief, this study provides comprehensive evidence that cordycepin inhibits osteosarcoma cell growth and invasion and induces osteosarcoma cell apoptosis by activating AMPK and inhibiting the AKT/mTOR signaling pathway and enhances the sensitivity of osteosarcoma cells to cisplatin, suggesting that cordycepin is a promising treatment for osteosarcoma.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Kai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ze-Xin Su
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Lin Jin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Deng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Nan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Li X, Li C, Guo C, Zhao Q, Cao J, Huang HY, Yue M, Xue Y, Jin Y, Hu L, Ji H. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J Genet Genomics 2021; 48:640-651. [PMID: 34167917 DOI: 10.1016/j.jgg.2021.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Small cell lung cancer (SCLC) is a phenotypically heterogeneous disease with an extremely poor prognosis, which is mainly attributed to the rapid development of resistance to chemotherapy. However, the relation between the growth phenotypes and chemo-resistance of SCLC remains largely unclear. Through comprehensive bioinformatic analyses, we found that the heterogeneity of SCLC phenotype was significantly associated with different sensitivity to chemotherapy. Adherent or semiadherent SCLC cells were enriched with activation of the PI3K/Akt/mTOR pathway and were highly chemoresistant. Mechanistically, activation of the PI3K/Akt/mTOR pathway promotes the phenotypic transition from suspension to adhesion growth pattern and confers SCLC cells with chemo-resistance. Such chemo-resistance could be largely overcome by combining chemotherapy with PI3K/Akt/mTOR pathway inhibitors. Our findings support that the PI3K/Akt/mTOR pathway plays an important role in SCLC phenotype transition and chemo-resistance, which holds important clinical implications for improving SCLC treatment.
Collapse
Affiliation(s)
- Xuefeng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medical Oncology, The First Affiliated Hospita, Hengyang MedicalSchool, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Li
- Department of Medical Oncology, The First Affiliated Hospita, Hengyang MedicalSchool, University of South China, Hengyang, Hunan 421001, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jiayu Cao
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
11
|
Shijie L, Zhen P, Kang Q, Hua G, Qingcheng Y, Dongdong C. Deregulation of CLTC interacts with TFG, facilitating osteosarcoma via the TGF-beta and AKT/mTOR signaling pathways. Clin Transl Med 2021; 11:e377. [PMID: 34185412 PMCID: PMC8214859 DOI: 10.1002/ctm2.377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
Although the treatment of osteosarcoma has improved, the overall survival rate of this common type of osseous malignancies has not changed for four decades. Thus, new targets for better therapeutic regimens are urgently needed. In this study, we found that high expression of clathrin heavy chain (CLTC) was an independent prognostic factor for tumor-free survival (HzR, 3.049; 95% CI, 1.476-6.301) and overall survival (HzR, 2.469; 95% CI, 1.005-6.067) of patients with osteosarcoma. Down-regulation of CLTC resulted in tumor-suppressive effects in vitro and in vivo. Moreover, we found that CLTC was transcriptionally regulated by a transcription factor-specificity protein 1 (SP1), which binds to the CLTC promoter at the -320 to -314-nt and +167 to +173-nt loci. Mechanistic investigations further revealed that CLTC elicited its pro-tumor effects by directly binding to and stabilizing trafficking from the endoplasmic reticulum to the Golgi regulator (TFG). Importantly, overexpression of TFG rescued both the tumor-suppressive effect and inhibition of the TGF-β and AKT/mTOR pathways caused by CLTC down-regulation, which indicated that the activity of CLTC was TFG-dependent. Immunohistochemistry analysis confirmed that CLTC expression was positively correlated with TFG expression. These findings collectively highlight CLTC as a new prognostic biomarker for patients with osteosarcoma, and the interruption of the SP1/CLTC/TFG axis may serve as a novel therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Li Shijie
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Pan Zhen
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qin Kang
- Department of Trauma and Reconstructive SurgeryRWTH Aachen University HospitalAachenGermany
| | - Guo Hua
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Qingcheng
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Cheng Dongdong
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
12
|
Zoledronic Acid Enhanced the Antitumor Effect of Cisplatin on Orthotopic Osteosarcoma by ROS-PI3K/AKT Signaling and Attenuated Osteolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6661534. [PMID: 33859780 PMCID: PMC8026287 DOI: 10.1155/2021/6661534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 01/17/2023]
Abstract
Osteoclasts can interact with osteosarcoma to promote the growth of osteosarcoma. Cisplatin is common in adjuvant chemotherapy of osteosarcoma. However, due to chemoresistance, the efficacy is profoundly limited. Previous studies have found that zoledronic acid (ZA) has osteoclast activation inhibition and antitumor effect. However, the combined effect of ZA and cisplatin on osteosarcoma remains unclear. In vitro, the effects of ZA and cisplatin alone or in combination on 143B cell activity, proliferation, apoptosis, and ROS-PI3K/AKT signaling were detected. At the same time, the effect of ZA and cisplatin on osteoclast formation, survival, and activity was detected by TRAP staining and bone plate absorption test. These were further verified in mice. The results showed that in vitro, compared with the single treatment and control, the combination of ZA and cisplatin could significantly inhibit the activity and proliferation of 143B cells and induced their apoptosis and further promoted the generation of ROS and inhibited the phosphorylation of PI3K and AKT. ROS scavenger and the agonist of the PI3K/AKT pathway could reverse these results. In addition, cisplatin in synergy with ZA could significantly inhibit osteoclast formation and survival to reduce bone plate absorption. In vivo, compared with the single group, the tumor volume and cell proliferation were significantly reduced, apoptosis and necrosis of tumor cells increased, and TRAP+ osteoclasts and osteolysis destruction decreased in the combined group. In conclusion, ZA enhanced the antitumor effect of cisplatin on osteosarcoma by ROS-PI3K/AKT signaling, reducing the chemoresistance and osteoclast activation to enhance chemotherapy and inhibit osteolysis. And this present study raised the possibility that combining ZA and cisplatin may represent a novel strategy against osteosarcoma.
Collapse
|