1
|
Devins KM, Ordulu Z, Mendoza RP, Croce S, Haridas R, Wanjari P, Pinto A, Oliva E, Bennett JA. Uterine Inflammatory Myofibroblastic Tumors: p16 as a Surrogate for CDKN2A Deletion and Predictor of Aggressive Behavior. Am J Surg Pathol 2024; 48:813-824. [PMID: 38630911 DOI: 10.1097/pas.0000000000002220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Uterine inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal neoplasms of uncertain malignant potential. Aside from the recently described risk stratification score, which has not been validated by other studies, and rare reports of aberrant p16 expression in malignant tumors, there are no criteria to reliably predict behavior. Herein, we evaluated the clinicopathologic features and p16 expression patterns in 30 IMTs, with genomic profiling performed in a subset (13 malignant, 3 benign). Fifteen patients had malignant IMTs, defined by extrauterine disease at diagnosis (n=5) or recurrence (n=10; median: 24 mo). Patients ranged from 8 to 65 (median: 51) years and tumors from 6 to 22 (median: 12.5) cm. In primary tumors (n=13), infiltrative borders were noted in 10, moderate/severe cytologic atypia in 9, tumor cell necrosis in 7, and lymphovascular invasion in 6, while mitoses ranged from 0 to 21 (median: 7) per 10 high-power fields. In contrast, 15 patients with benign IMTs ranged from 28 to 65 (median: 44) years, with follow-up of 18 to 114 (median: 41) months. Tumors ranged from 1.9 to 8.5 (median: 5.5) cm, 2 demonstrated infiltrative borders, and 1 had moderate cytologic atypia. No other high-risk histologic features were observed. Application of the previously described clinicopathologic risk stratification score in all primary IMTs with complete data (n=18) classified 8 as high-risk (all malignant), 8 as intermediate-risk (3 malignant, 5 benign), and 2 as low-risk (benign). p16 was aberrant in all malignant IMTs, with <1% expression noted in 10, overexpression (>90%) in 4, and subclonal loss in 1; all benign tumors had patchy staining (20% to 80%; median 50%). Molecular analysis detected CDKN2A deletions in 8 of 9 tumors with <1% p16 expression, while the other harbored a TERT promoter mutation. TERT promoter mutations were also identified in 2 of 3 IMTs with p16 overexpression. Neither of these alterations was detected in the 3 sequenced benign IMTs. Thus, we recommend performing p16 on all uterine IMTs, which, combined with the risk stratification score, is a promising and cost-effective tool for predicting CDKN2A status and outcome in these patients. It may be particularly useful for tumors with incomplete information for risk stratification (ie, morcellated tumors) and for further stratifying intermediate-risk IMTs when sequencing is unavailable.
Collapse
Affiliation(s)
- Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zehra Ordulu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Rachelle P Mendoza
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonie, Bordeaux, France
| | | | | | - Andre Pinto
- Department of Pathology, University of Miami, Miami, FL
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
2
|
Schneider JL, Lin JJ, Shaw AT. ALK-positive lung cancer: a moving target. NATURE CANCER 2023; 4:330-343. [PMID: 36797503 PMCID: PMC10754274 DOI: 10.1038/s43018-023-00515-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a potent oncogenic driver in lung cancer. ALK tyrosine kinase inhibitors yield significant benefit in patients with ALK fusion-positive (ALK+) lung cancers; yet the durability of response is limited by drug resistance. Elucidation of on-target resistance mechanisms has facilitated the development of next-generation ALK inhibitors, but overcoming ALK-independent resistance mechanisms remains a challenge. In this Review, we discuss the molecular underpinnings of acquired resistance to ALK-directed therapy and highlight new treatment approaches aimed at inducing long-term remission in ALK+ disease.
Collapse
Affiliation(s)
- Jaime L Schneider
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA.
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
3
|
Shimizu M, Miyanaga A, Seike M, Matsuda K, Matsumoto M, Noro R, Fujita K, Mano Y, Furuya N, Kubota K, Gemma A. The respiratory microbiome associated with chronic obstructive pulmonary disease comorbidity in non-small cell lung cancer. Thorac Cancer 2022; 13:1940-1947. [PMID: 35580613 PMCID: PMC9250845 DOI: 10.1111/1759-7714.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Research has shown that some microbiomes are linked to cancer. Hence, we hypothesize that alterations in the respiratory microbiome might be associated with lung cancer. Methods Through droplet digital polymerase chain reaction analysis, we investigated the abundance of Acidovorax in surgically resected primary tumors and corresponding nontumor lung tissues obtained from 50 Japanese patients with non‐small cell lung cancer. Results The rate of positivity for Acidovorax in tumor and nontumor tissues was 44 and 26%, respectively. The abundance of Acidovorax in tumor tissues was significantly higher in patients with nonsquamous cell carcinoma complicated by chronic obstructive pulmonary disease (COPD) and those who relapsed after surgical resection (p < 0.05). In tumor tissues, the results of the univariate and multivariate analyses revealed that only COPD exerted a direct effect on the abundance of Acidovorax (p < 0.05). Furthermore, the presence of Acidovorax was high in lung cancer patients with COPD comorbidity (65%) and TP53 gene mutation; only one of the nontumor tissues was positive for Acidovorax. In patients with lung cancer complicated by COPD, Acidovorax tended to be present in both the tumor and nontumor areas. Conclusions This study identified novel microbiota involved in lung cancer with COPD comorbidity. The results suggested that Acidovorax may be a useful biomarker in the screening for lung cancer. Further studies are warranted to validate the clinical significance of the microbiome in a larger independent patient cohort.
Collapse
Affiliation(s)
- Masamitsu Shimizu
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazue Fujita
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoko Mano
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Nobuhiko Furuya
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|