1
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
2
|
Siqueira PB, de Sousa Rodrigues MM, de Amorim ÍSS, da Silva TG, da Silva Oliveira M, Rodrigues JA, de Souza da Fonseca A, Mencalha AL. The APE1/REF-1 and the hallmarks of cancer. Mol Biol Rep 2024; 51:47. [PMID: 38165468 DOI: 10.1007/s11033-023-08946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain's role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.
Collapse
Affiliation(s)
- Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil.
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil.
| | - Ísis Salviano Soares de Amorim
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
- Laboratório de Alimentos Funcionais, Universidade Federal do Rio de Janeiro, Instituto de Nutrição Josué de Castro, Rio de Janeiro, Brasil
| | - Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Laboratório de Biofotônica, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Matheus da Silva Oliveira
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Juliana Alves Rodrigues
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Laboratório de Biofotônica, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Laboratório de Biologia do Câncer, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, Brasil
| |
Collapse
|
3
|
Zhou J, Wei Z, Yang C, Jia D, Pan B, Zeng Y, Sun D, Yu Y. APE1 promotes radiation resistance against radiation-induced pyroptosis by inhibiting the STING pathway in lung adenocarcinoma. Transl Oncol 2023; 36:101749. [PMID: 37544034 PMCID: PMC10424251 DOI: 10.1016/j.tranon.2023.101749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Mammalian apurinic/apyrimidinic endonuclease 1 (APE1, APEX1) is a multifunctional enzyme that maintains cellular homeostasis. It is involved in the base excision repair (BER) pathway and plays a key role in radiation-induced DNA damage response. However, the relationship between APE1-driven radiation resistance and pyroptosis in lung adenocarcinoma (LUAD) cells and the underlying molecular mechanisms remain unclear. We found that APE1 was significantly upregulated in LUAD tissues compared to para-carcinoma tissues and promoted the proliferation and invasion of LUAD cells in vitro and in vivo. Mechanistically, APE1 inhibited pyroptosis by inactivating the interferon gene stimulator (STING) pathway via direct interaction with AIM2 and DDX41, as detected by RNA-seq and co-immunoprecipitation. APE1 protects LUAD cells against radiation-induced damage and induces radio-resistance by targeting the STING pathway. It can induce pyroptosis and is negatively regulated by interactions with AIM2 and DDX41. Therefore, APE1 inhibitors should be considered to enhance the radiosensitivity of LUAD cells and improve patient prognosis and therapeutic outcomes. Thus, APE1 play a role in the tumor immune microenvironment and in tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Zixin Wei
- Department of Medical Oncology, Sichuan Cancer Hospital, Chengdu 610042, China
| | - Chuan Yang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China
| | - Di Sun
- Department of Radiotherapy Technology Center, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150040, China.
| |
Collapse
|
4
|
Shang Z, Li J. Comparison of clinical efficacy between chrono-chemotherapy and conventional chemotherapy in patients with non-small cell lung cancer. Am J Cancer Res 2023; 13:4277-4287. [PMID: 37818045 PMCID: PMC10560957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023] Open
Abstract
This work focused on the clinical efficacy of chrono-chemotherapy and conventional chemotherapy on patients with non-small cell lung cancer (NSCLC), providing a theoretical basis for the clinical promotion of chrono-chemotherapy. 60 NSCLS patients in our hospital were randomly enrolled into a chrono-chemotherapy group and a conventional chemotherapy group, with 30 cases in each. Patients were treated with the standardized first-line treatment TP regimen (paclitaxel + cisplatin). After two cycles of chemotherapy, the clinical efficacy and adverse reactions of patients receiving various methods were observed. After the chemotherapy, CD3+, CD4+, and CD28+ increased while NK cells, B cells, and CD28- decreased in the conventional chemotherapy group (P<0.05); CD3+, CD4+, CD4+CD8+, B cells, and CD28+ increased while CD8+, NK cells, and CD28- decreased in chrono-chemotherapy group (P<0.05). The progression-free survival (PFS) of patients in the chrono-chemotherapy group (3.29 ± 0.46 years vs 2.56 ± 0.35 years) was longer (P<0.05). The quality of life (QOL) score in the chrono-chemotherapy group was higher (64.83 ± 1.54 points vs 51.72 ± 1.89 points) (P<0.05). The incidences of leukopenia (63.33%) and nausea and vomiting (53.33%) in the conventional chemotherapy group were higher than those in the chrono-chemotherapy group (30.00% and 30.00, respectively) (P<0.05). The chrono-chemotherapy could improve the cellular immune function of NSCLS patients, prolong their survival period, elevate the QOL, and reduce the side effects.
Collapse
Affiliation(s)
- Ziying Shang
- Department of Respiratory, Shengzhou People’s Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)Shengzhou 312400, Zhejiang, China
| | - Juan Li
- Department of Radiotherapy, Hangzhou Cancer HospitalHangzhou 310000, Zhejiang, China
| |
Collapse
|
5
|
Szmajda-Krygier D, Krygier A, Żebrowska-Nawrocka M, Pietrzak J, Świechowski R, Wosiak A, Jeleń A, Balcerczak E. Differential Expression of AP-2 Transcription Factors Family in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma-A Bioinformatics Study. Cells 2023; 12:cells12040667. [PMID: 36831334 PMCID: PMC9954805 DOI: 10.3390/cells12040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Members of the activator protein 2 (AP-2) transcription factor (TF) family are known to play a role in both physiological processes and cancer development. The family comprises five DNA-binding proteins encoded by the TFAP2A to TFAP2E genes. Numerous scientific reports describe differential expression of these TF and their genes in various types of cancer, identifying among them a potential oncogene or suppressor like TFAP2A or TFAP2C. Other reports suggest their influence on disease development and progression, as well as response to treatment. Not all members of this AP-2 family have been comprehensively studied thus far. The aim of the present article is to gather and discuss knowledge available in bioinformatics databases regarding all five members of this family and to differentiate them in relation to the two most common lung cancer subtypes: adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). In addition, to assess the difference in levels depending on a number of clinicopathological factors, the impact on patient survival and interactions with tumor-infiltrating immune cells. This article may help to identify the target for further original research that may contribute to the discovery of new diagnostic biomarkers and define the molecular differences between LUAD and LUSC, which may affect the therapy effectiveness improvement and longer survival.
Collapse
|
6
|
[Consensus on Postoperative Recurrence Prediction of Non-small Cell Lung Cancer
Based on Molecular Markers]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:701-714. [PMID: 36285390 PMCID: PMC9619343 DOI: 10.3779/j.issn.1009-3419.2022.102.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Significant progress has been made in lung cancer screening, surgery, chemoradiation, targeted therapy, and immunotherapy recently. Surgical resection is the most important treatment for localized non-small cell lung cancer (NSCLC) so far, but there are still many patients who develop local recurrence or distant metastases within 5 years of surgery. Currently, the risk factors of recurrence in patients with NSCLC are mainly based on clinical and pathological features, which hardly identify patients at high risk of recurrence accurately. With the development of new detection technologies, a number of molecular markers that may have a predictive risk of recurrence in NSCLC have been discovered over the years. In order to summarize the molecular markers related to postoperative recurrence in NSCLC patients, we have formulated a consensus on the prediction of postoperative recurrence of NSCLC based on molecular markers. This consensus mainly focuses on the early stage NSCLC patients, discusses and summarizes the risk factors of disease recurrence from the molecular level. It is hoped that more and more valuable information can be provided for the management of patients, so as to provide more guidance for the perioperative management of the patients with early stage NSCLC in the future.
.
Collapse
|
7
|
Zhou Y, Fan Y, Qiu B, Lou M, Liu X, Yuan K, Tong J. Effect of PFKFB4 on the Prognosis and Immune Regulation of NSCLC and Its Mechanism. Int J Gen Med 2022; 15:6341-6353. [PMID: 35942289 PMCID: PMC9356739 DOI: 10.2147/ijgm.s369126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background NSCLC (non-small cell lung cancer) has become the malignancy with the highest incidence and mortality rate worldwide. Fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is a key regulator of glycolysis with both kinase and phosphatase activities. The Warburg effect, or increased glycolysis in tumors, provides the metabolic basis for cancer cell proliferation and metastasis, and the Warburg pathway enzyme PFKFB4 is a newly identified important kinase. This study aimed to elucidate the poor prognostic relevance of PFKFB4 in non-small cell lung cancer tissues and its relationship with immune cell infiltration, immune cell biomarkers, and immune checkpoints. Methods In this study, immunohistochemical methods were used to assess PFKFB4 expression levels in 140 surgical specimens from patients with histologically confirmed non-small cell lung cancer and to investigate the relationship between PFKFB4 expression levels and the patients’ clinicopathological characteristics. The impact of PFKFB4 expression on prognosis was evaluated using Kaplan–Meier survival analysis and Cox regression analysis. Results When compared to normal paracrine tissues, PFKFB4 expression was enhanced in lung cancer tissues, and Kaplan–Meier survival analysis revealed that patients with high PFKFB4 expression had a worse prognosis. In NSCLC, PFKFB4 was found to be associated with immune cell infiltration and immunological checkpoints. Conclusion PFKFB4 expression may be upregulated as a sign of poor prognosis in NSCLC, and PFKFB4 may be implicated not only in the genesis and progression of NSCLC but also in its immunological control.
Collapse
Affiliation(s)
- Yong Zhou
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yongfei Fan
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Binzhe Qiu
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ming Lou
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoshuang Liu
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, People’s Republic of China
| | - Kai Yuan
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Jichun Tong
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Correspondence: Jichun Tong; Kai Yuan, Email ;
| |
Collapse
|
8
|
Wang J, Zhang W, Hou W, Zhao E, Li X. Molecular Characterization, Tumor Microenvironment Association, and Drug Susceptibility of DNA Methylation-Driven Genes in Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:837919. [PMID: 35386197 PMCID: PMC8978676 DOI: 10.3389/fcell.2022.837919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that DNA methylation has essential roles in the development of renal cell carcinoma (RCC). Aberrant DNA methylation acts as a vital role in RCC progression through regulating the gene expression, yet little is known about the role of methylation and its association with prognosis in RCC. The purpose of this study is to explore the DNA methylation-driven genes for establishing prognostic-related molecular clusters and providing a basis for survival prediction. In this study, 5,198 differentially expressed genes (DEGs) and 270 DNA methylation-driven genes were selected to obtain 146 differentially expressed DNA methylation-driven genes (DEMDGs). Two clusters were distinguished by consensus clustering using 146 DEMDGs. We further evaluated the immune status of two clusters and selected 106 DEGs in cluster 1. Cluster-based immune status analysis and functional enrichment analysis of 106 DEGs provide new insights for the development of RCC. To predict the prognosis of patients with RCC, a prognostic model based on eight DEMDGs was constructed. The patients were divided into high-risk groups and low-risk groups based on their risk scores. The predictive nomogram and the web-based survival rate calculator (http://127.0.0.1:3496) were built to validate the predictive accuracy of the prognostic model. Gene set enrichment analysis was performed to annotate the signaling pathways in which the genes are enriched. The correlation of the risk score with clinical features, immune status, and drug susceptibility was also evaluated. These results suggested that the prognostic model might be a promising prognostic tool for RCC and might facilitate the management of patients with RCC.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
10
|
Tian Y, Zhou Y, Liu J, Yi L, Gao Z, Yuan K, Tong J. Correlation of SIDT1 with Poor Prognosis and Immune Infiltration in Patients with Non-Small Cell Lung Cancer. Int J Gen Med 2022; 15:803-816. [PMID: 35125883 PMCID: PMC8807869 DOI: 10.2147/ijgm.s347171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yubin Tian
- School of Medical, Dalian Medical University, Dalian, People’s Republic of China
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yong Zhou
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Junhui Liu
- School of Medical, Dalian Medical University, Dalian, People’s Republic of China
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Lei Yi
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Zhaojia Gao
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Kai Yuan
- School of Medical, Dalian Medical University, Dalian, People’s Republic of China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Correspondence: Kai Yuan; Jichun Tong, Email ;
| | - Jichun Tong
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|