1
|
Zhan X, Zhou H, Deng C, Hua RX, Pan L, Zhang S, Lu H, He S, Wang Y, Ruan J, Zhou C, He J. Genetic variations in NER pathway gene polymorphisms and Wilms tumor risk: A six-center case-control study in East China. IUBMB Life 2024; 76:1392-1402. [PMID: 39415460 DOI: 10.1002/iub.2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/17/2024] [Indexed: 10/18/2024]
Abstract
The nucleotide excision repair (NER) system is one of the main ways to protect organisms from DNA damage caused by endogenous and exogenous carcinogens. NER deficiency increases genome mutations, chromosomal aberrations, and cancer viability. However, the genetic association between Wilms tumor and NER pathway gene polymorphisms needs to be further validated. We assessed the associations between 19 NER gene polymorphisms and Wilms tumor susceptibility in 416 cases and 936 controls from East China via the TaqMan method. We found that xeroderma pigmentosum group D (XPD) rs238406 and rs13181 significantly decreased the risk of Wilms tumor [adjusted odds ratio (OR) = 0.59, 95% confidence interval (CI) = 0.46-0.75, p <.0001; adjusted OR = 0.63, 95% CI = 0.44-0.89, p = .009, respectively]. Furthermore, the rs751402 and rs2296147 polymorphisms in the xeroderma pigmentosum group G (XPG) gene were significantly correlated with an increased risk for Wilms tumor (adjusted OR = 1.47, 95% CI = 1.03-2.09, p = .034; adjusted OR = 2.14, 95% CI = 1.29-3.56, p = .003, respectively). Expression quantitative trait loci (eQTL) analysis revealed that these four polymorphisms may affect the expression of genes that are adjacent to XPD and XPG. Our study provides evidence that XPD and XPG gene polymorphisms are associated with Wilms tumor risk. Nonetheless, these findings should be confirmed in a larger sample size.
Collapse
Affiliation(s)
- Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lingling Pan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Hongting Lu
- Department of Pediatric Surgery, Qingdao Women and Children's Hospital, Qingdao, China
| | - Shaohua He
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yizhen Wang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li K, Zhang K, Yuan H, Fan C. Prognostic role of primary tumor size in Wilms tumor. Oncol Lett 2024; 27:164. [PMID: 38426157 PMCID: PMC10902748 DOI: 10.3892/ol.2024.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024] Open
Abstract
Wilms tumor (WT) is the most common childhood malignant kidney tumor. The aim of the present study was to determine the impact of primary tumor size on the survival of patients with WT. The data of 1,523 patients diagnosed with WT between 2000 and 2017 were retrieved from the Surveillance, Epidemiology, and End Results database. Receiver operating characteristic curves were plotted to determine the optimal cut-off value of primary tumor size. Overall survival (OS) and cancer-specific survival (CSS) were analyzed using the Kaplan-Meier method and the Cox proportional hazards regression model. The optimal cut-off value for primary tumor size was found to be 11.15 cm. No significant difference in the distribution of tumor size was detected between male and female patients. However, lymph node metastasis and distant metastasis were significantly more frequent in patients whose tumor was ≥11.15 cm in size compared with those with smaller tumors. In addition, patients with larger tumors exhibited significantly worse OS and CSS rates compared with those with smaller tumors. Furthermore, primary tumor size was identified as an independent prognostic factor for OS and CSS in the multivariate analyses. In summary, the present study indicates that primary tumor size is an independent prognostic factor for patients with WT, and tumors ≥11.15 cm are associated with worse OS and CSS.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, P.R. China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, P.R. China
| | - Hexing Yuan
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
3
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Deng L, Hua RX, Deng C, Zhu J, Zhang Z, Cheng J, Zhang J, Zhou H, Li S, Ruan J, Liu G, He J, Fu W. WDR4 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. J Cancer 2023; 14:1293-1300. [PMID: 37283791 PMCID: PMC10240673 DOI: 10.7150/jca.83747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Wilms tumor is the most common embryonal renal malignancy in children. WDR4 is an indispensable noncatalytic subunit of the RNA N7-methylguanosine (m7G) methyltransferase complex and plays an essential role in tumorigenesis. However, the relationship between polymorphisms in the WDR4 gene and susceptibility to Wilms tumor remains to be fully investigated. We performed a large case-control study involving 414 patients and 1199 cancer-free controls to investigate whether single nucleotide polymorphisms (SNPs) in the WDR4 gene are associated with Wilms tumor susceptibility. WDR4 gene polymorphisms (rs2156315 C > T, rs2156316 C > G, rs6586250 C > T, rs15736 G > A, and rs2248490 C > G) were genotyped using the TaqMan assay. In addition, unconditioned logistic regression analysis was performed, odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between WDR4 gene SNPs and Wilms tumor susceptibility as well as the strength of the associations. We found that only the rs6586250 C>T polymorphism was significantly associated with an increased risk of Wilms tumor (adjusted OR=2.99, 95% CI = 1.28-6.97, P = 0.011 for the rs6586250 TT genotype; adjusted OR=3.08, 95% CI = 1.33-7.17, P = 0.009 for the rs6586250 CC/CT genotype). Furthermore, the stratification analysis revealed that patients with the rs6586250 TT genotype and carriers with 1-5 risk genotypes exhibited statistically significant associations with increased Wilms tumor risk in specific subgroups. However, the rs2156315 CT/TT genotype was identified as having a protective effect against Wilms tumor in the age >18 months subgroup compared with the rs2156315 CC genotype. In brief, our study demonstrated that the rs6586250 C > T polymorphism of the WDR4 gene was significantly associated with Wilms tumor. This finding may contribute to the understanding of the genetic mechanism of Wilms tumor.
Collapse
Affiliation(s)
- Linqing Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Zhengtao Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| |
Collapse
|