1
|
Zhang J, Li Z, Han J, Tian Z, Meng Q, Niu W. KLF7 enhances the invasion and migration of colorectal cancer cells via the miR-139-5p/TPD52 axis. Cancer Biol Ther 2024; 25:2385172. [PMID: 39097779 PMCID: PMC11299624 DOI: 10.1080/15384047.2024.2385172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
In this study, we aimed to investigate the molecular mechanism of Krüppel-like factor 7 (KLF7) in colorectal cancer (CRC) cell invasion and migration. The expression pattern of KLF7 in CRC tissues and the correlation between KLF7 expression and clinical symptoms of CRC were analyzed. CRC cell lines were transfected with si-KLF7, followed by qRT-PCR or western blot detection of KLF7, miR-139-5p, and tumor protein D52 (TPD52) expression, cell counting kit-8 (CCK-8) assay to detect cell viability, and transwell detection of invasion and migration. Chromatin immunoprecipitation (ChIP) analyzed the enrichment KLF7 in the miR-139-5p promoter. The dual-luciferase reporter assay verified the binding relationship between KLF7 and miR-139-5p, and between miR-139-5p and TPD52. In the subcutaneous tumorigenesis experiment, tumor growth was observed and ki67-positive expression was detected. KLF7 is abundantly expressed in CRC cells KLF7 silencing inhibits CRC cell viability, invasion, and migration. KLF7 represses miR-139-5p expression by binding to the miR-139-5p promoter. miR-139-5p targets TPD52 expression. miR-13-5p inhibition or TPD52 overexpression partially counteracted the effect of KLF7 silencing in CRC cells. KLF7 silencing suppresses tumor growth in vivo. In conclusion, KLF7 suppresses miR-139-5p expression by binding to the miR-139-5p promoter, thereby upregulating TPD52 expression and enhancing CRC cell invasion and migration.
Collapse
Affiliation(s)
- Juan Zhang
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihan Li
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaxu Han
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongtao Tian
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingyu Meng
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenbo Niu
- Department of External Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Boybay E, Atilgan R, Pala Ş, Kuloğlu T, Artaş G. Investigation of Hyaluronan Synthase 2 and CD44 immune reactivity as a biomarker to predict Progesterone-Resistant Endometrial Hyperplasia without atypia: A retrospective case-control study. INDIAN J PATHOL MICR 2024; 67:747-752. [PMID: 38727422 DOI: 10.4103/ijpm.ijpm_631_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND/AIMS In our study, the effect of hyaluronan synthase 2 (HAS2) and CD44 immunoreactivity as a predictive biomarker in the prediction of progesterone-resistant endometrial hyperplasia (EH) cases without atypia was investigated. SETTINGS AND DESIGN In this retrospective study, HAS2 and CD44 immunoreactivity in the endometrial tissues of 60 patients diagnosed with EH and treated with progesterone and 20 patients diagnosed with proliferative endometrium (PE) were evaluated. MATERIALS AND METHODS Eighty patients were divided into four groups. Group 1 (G1) (n = 20) = PE group, G2 (n = 20) = EH group without atypia, G3 (n = 20) = group with continued EH with treatment, G4 (n = 20) = EH with treatment without atypia. STATISTICAL ANALYSIS Intergroup evaluation was done with One-way ANOVA and posthoc tukey test. P < 0.05 values were considered statistically significant. RESULTS The HAS2 immunoreactivity score of G2 and G3 was higher than G1 and G4. On the other hand, there was no difference between G1 and G4. When G2 and G3 were compared, HAS2 immunoreactivity scores were significantly increased in G3. When CD44 immunoreactivity was compared with G1, a significant increase was detected in G2, G3, and G4. However, CD44 immunoreactivity scores were similar in G2, G3, and G4. CONCLUSION HAS2 immunoreactivity may be an immunohistochemical biomarker in predicting EH cases without atypia resistant to progesterone therapy. Since CD44 immunoreactivity is increased in all EH groups without atypia, it is not effective in predicting treatment resistance.
Collapse
Affiliation(s)
- Emine Boybay
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Şehmus Pala
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embriology, Firat University School of Medicine, Elazig, Turkey
| | - Gökhan Artaş
- Department of Pathology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
3
|
Li M, Hou Y, Chen Y, Sun C, Liang M, Chu X, Wen X, Yuan F, Peng C, Wang C, Xie J, Zhang J. Palmitic acid promotes miRNA release from adipocyte exosomes by activating NF-κB/ER stress. Nutr Diabetes 2024; 14:75. [PMID: 39271650 PMCID: PMC11399118 DOI: 10.1038/s41387-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE The release of adipose tissue-derived miRNAs is increased under conditions of obesity, but the exact molecular mechanisms involved have not been elucidated. This study investigated whether obesity-induced increases in palmitic acid (PA) content could activate the NF-κB/endoplasmic reticulum stress (ER stress) pathway and promote the expression and release of exosomal miRNAs in adipocytes. METHODS Abdominal adipose tissue and serum samples were collected from normal weight individuals and people with obesity to clarify the correlation of serum PA content with NF-κB/ER stress and the release of exosomal miRNAs. NF-κB and ER stress were blocked in obese mice and in vitro cultured adipocytes to demonstrate the molecular mechanisms by which PA promotes the release of exosomal miRNAs.The morphology, particle size and distribution of the exosomes were observed via transmission electron microscopy and NTA. RESULTS Accompanied by increased serum PA levels, the NF-κB/ER stress pathway was activated in the adipose tissue of people with obesity and in high-fat diet (HFD)-induced obese mice; moreover, the levels of miRNAs in both adipose tissue and serum were increased. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reduced the levels of miRNAs in abdominal adipose tissue and serum, decreased blood glucose levels, and improved glucose tolerance and insulin sensitivity in obese mice. In 3T3-L1 adipocytes, high concentrations of PA activated the NF-κB/ER stress pathway and increased the expression and release of miRNAs in exosomes. P-p65 (Bay11-7082) and ER stress (TUDCA) blockers significantly reversed the increased release exosomal miRNAs cause by PA. CONCLUSIONS Obesity-induced increases in PA content increase the expression and release of miRNAs in adipocyte exosomes by activating the NF-κB/ER stress pathway.
Collapse
Affiliation(s)
- Menghuan Li
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Chaoyue Sun
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
- Medical College of Tarim University, Tarim Road, Alaer, Xinjiang, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Road, Shihezi, Xinjiang, China.
| |
Collapse
|
4
|
Pan L, Zhang L, Fu J, Shen K, Zhang G. Integrated transcriptome sequencing and weighted gene co-expression network analysis reveals key genes of papillary thyroid carcinomas. Heliyon 2024; 10:e27928. [PMID: 38560266 PMCID: PMC10981042 DOI: 10.1016/j.heliyon.2024.e27928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Papillary thyroid carcinoma (PTC) accounts for the majority of thyroid cancers and has a high recurrence rate. We aimed to screen key genes involved in PTC to provide novel insights into the mechanisms of PTC. Methods Seven microarray datasets of PTC were downloaded from gene expression omnibus database. Differentially expressed genes (DEGs) between PTC and normal samples were screened in the merged dataset. Then, protein-protein interaction (PPIs) functional modules analysis and weighted gene co-expression network analysis (WGCNA) were utilized to identify PTC-associated key genes. The identified key genes were then characterized from various aspects, including gene set enrichment analysis (GSEA) and the associations with immune infiltration, methylation levels and prognosis. Results A large numbers of DEGs were identified, and these DEGs are involved in several cancer pathways. Nine key genes (including down-regulated genes GNA14, AVPR1A, and WFS1, and up-regulated genes LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1) were identified. Patients in the AVPR1A and GNA14 high expression groups had better disease-free survival (DFS) than those in the low expression group. Key genes were mainly involved in P53 pathway, estrogen response, apoptosis, glycolysis, NOTCH signaling, epithelial mesenchymal transition, WNT_beta catenin signaling, and inflammatory response. The expression of key genes was associated with immune cell infiltration and corresponding methylation levels. The verification results of key gene proteins and mRNA expression levels using external validation datasets were consistent with our expectations, implying the involvements of key genes in PTC. Conclusion The key genes may serve as potential therapeutic targets for PTC. This study provides novel insights into the mechanisms underlying PTC development.
Collapse
Affiliation(s)
- Lingfeng Pan
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Jingyao Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Keyu Shen
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| |
Collapse
|
5
|
Li Z, Liu Q. The Oncogenic Role of KLF7 in Colon Adenocarcinoma and Therapeutic Perspectives. Int J Genomics 2023; 2023:5520926. [PMID: 38116138 PMCID: PMC10730248 DOI: 10.1155/2023/5520926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Colon adenocarcinoma, a highly prevalent and aggressive form of colorectal cancer, necessitates a comprehensive understanding of its molecular mechanisms to identify potential therapeutic targets. The Krüppel-like factor 7 (KLF7), a transcription factor, has been associated with various malignancies, yet its specific role in colon adenocarcinoma remains largely unexplored. Here, we aimed to determine the expression and functional significance of KLF7 in colon adenocarcinoma. Our findings revealed a significant upregulation of KLF7 expression in colon adenocarcinoma tissues compared to adjacent normal tissues. Moreover, elevated KLF7 expression correlated with advanced tumor stage, lymph node metastasis, and poor overall survival in colon adenocarcinoma patients. Functional assays demonstrated that silencing KLF7 resulted in reduced cell proliferation, migration, and invasion, indicating its involvement in promoting tumor growth and metastasis. Additionally, we identified potential downstream targets of KLF7, including genes associated with cell cycle regulation and epithelial-mesenchymal transition. These results underscore the tumor-promoting role of KLF7 in colon adenocarcinoma, positioning it as a potential prognostic biomarker and therapeutic target for this aggressive disease.
Collapse
Affiliation(s)
- Zhenjia Li
- Department of Digestive Surgery, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Qi Liu
- Department of Digestive Surgery, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| |
Collapse
|
6
|
Li Y, Xu Q, Wang Y, Chen D, Du Y, Li R, Liu K, Zhu J, Lin Y. Knockdown of KLF7 inhibits the differentiation of both intramuscular and subcutaneous preadipocytes in goat. Anim Biotechnol 2023; 34:1072-1082. [PMID: 34890305 DOI: 10.1080/10495398.2021.2011739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
KLF7 belongs to the Krüppel-like factors (KLFs) family, which function as transcriptional regulators controlling a number of basic cellular processes, involving proliferation, differentiation, and migration. Here, we reveal insights into the differentiated expression of KLF7 in different goat tissues and different stages of growth, and the inhibition role of KLF7 knockdown to differentiation by using goat intramuscular and subcutaneous preadipocytes. We demonstrate that KLF7 expression is obviously changed during the differentiation of preadipocytes into mature adipocytes. Knockdown of KLF7 inhibited lipid droplet accumulation, reduced the expression of adipogenic markers both in intramuscular and subcutaneous preadipocytes in goats, suggesting that KLF7 is a novel regulator of adipogenesis. KLF7 expression changed also up or down-regulation the other KLF family members, but there were differences between these two types of cells. Investigation into the mechanism that KLF7 regulates preadipocyte differentiation revealed that KLF family members KLF1, KLF5, KLF6, KLF8, KLF11, KLF12, KLF16, KLF17 and adipogenic markers C/EBPα and SREBP1 promoter region present KLF7 transcriptional binding sites. Altogether, the data here identify KLF7 as a novel regulator of adipogenesis.
Collapse
Affiliation(s)
- Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yu Du
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Ruiwen Li
- Reproductive and Endocrine Laboratory, Chengdu Woman-Child Central Hospital, Chengdu, China
| | - Kehan Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| |
Collapse
|
7
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
8
|
Krüppel-like Factor 7 inhibits proliferation and migration of pulmonary smooth muscle cells via p21 activation. Eur J Pharmacol 2023; 940:175473. [PMID: 36566916 DOI: 10.1016/j.ejphar.2022.175473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are critical contributors to the pulmonary vascular remodeling that occurs during the development of Pulmonary arterial hypertension (PAH). Krüppel-like Factor 7 (KLF7) has been reported to be involved in the development of certain cardiovascular diseases. However, the role of KLF7 in PAH remains unknown. Here, we aimed to explore whether KLF7 mediates the proliferation and migration of PASMCs and its underlying mechanism. In this study, Sprague Dawley rats were exposed to 60 mg/kg monocrotaline (MCT) for 3 weeks to induce PAH and human PASMCs were stimulated with 20 ng/ml platelet-derived growth factor-BB (PDGF-BB) for 24 h to induce proliferation and migration. The mRNA and protein expression of KLF7 were significantly down-regulated in MCT-induced PAH rats and PDGF-BB-treated PASMCs. Under normal conditions, KLF7 knockdown obviously promoted PASMCs proliferation and migration, whereas KLF7 overexpression exhibited the opposite effects. Furthermore, PDGF-BB promoted the PASMCs proliferation and migration, increased the cell proportion in S phase, which was significantly attenuated by overexpression of KLF7. Mechanistic investigation indicated that KLF7 through activation its target protein, the cell cycle inhibitor p21, which finally leading to the inhibition of PASMCs growth. Consistently, UC2288, a specific inhibitor of p21, partially reversed the PASMCs proliferation inhibited by KLF7 overexpression. Taken collectively, the data suggested that KLF7 inhibits PASMCs proliferation and migration via p21 pathway and it may be used as a new therapeutic target for the PAH.
Collapse
|
9
|
The potential of Lycium barbarum miR166a in kidney cancer treatment. Exp Cell Res 2023; 423:113455. [PMID: 36584744 DOI: 10.1016/j.yexcr.2022.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Predator species of animal can absorb plant microRNA that can regulate target gene expression and physiological function across species. The herb Lycium barbarum, a traditional Chinese medicine, has a wide range of antitumor effects. However, there are no reports on the effects of microRNA derived from it on the cross-border regulation of renal cell carcinoma (RCC). We performed in vitro and in vivo experiments to explore the role and mechanism of the L. barbarum-derived microRNA miR166a (Lb-miR166a) in cross-border regulation of RCC. Our mRNA sequencing analysis showed that Lb-miR166a regulates the expression of various genes in tumor cells, including 1232 upregulated genes and 581 downregulated genes, which were enriched to 1094 Gene Ontology entries and 43 Kyoto Encyclopedia of Genes and Genomes pathways. In vitro cell experiments confirmed that Lb-miR166a can inhibit the proliferation of RCC cells, promote the apoptosis of tumor cells, and inhibit the invasion and metastasis of tumor cells by regulating the expression of related genes. Furthermore, our in vivo tumor-bearing experiment showed that subcutaneous tumor formation volume decreased in Lb-miR166a mice, along with the number of liver metastases. This study elucidates the role and mechanism of Lb-miR166a in RCC treatment (Fig. 1). Our results further mechanistically confirm the antitumor properties of L. barbarum. Our study may contribute to the clinical development of a targeted drug for RCC treatment.
Collapse
|
10
|
Sun Z, Zeng Y, Yuan T, Chen X, Wang H, Ma X. Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma. Front Immunol 2022; 13:906889. [PMID: 35757722 PMCID: PMC9226377 DOI: 10.3389/fimmu.2022.906889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity in therapeutic responses and overall survival (OS). In recent years, accumulating research has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD is not currently fully elucidated. This study aims to discover novel insights into the mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers by exploring the potential association between hypoxia and LUAD. Methods Four machine learning approaches were implemented to screen out potential hypoxia-related genes for the prognosis of LUAD based on gene expression profile of LUAD samples obtained from The Cancer Genome Atlas (TCGA), then validated by six cohorts of validation datasets. The risk score derived from the hypoxia-related genes was proven to be an independent factor by using the univariate and multivariate Cox regression analyses and Kaplan-Meier survival analyses. Hypoxia-related mechanisms based on tumor mutational burden (TMB), the immune activity, and therapeutic value were also performed to adequately dig deeper into the clinical value of hypoxia-related genes. Finally, the expression level of hypoxia genes was validated at protein level and clinical samples from LUAD patients at transcript levels. Results All patients in TCGA and GEO-LUAD group were distinctly stratified into low- and high-risk groups based on the risk score. Survival analyses demonstrated that our risk score could serve as a powerful and independent risk factor for OS, and the nomogram also exhibited high accuracy. LUAD patients in high-risk group presented worse OS, lower TMB, and lower immune activity. We found that the model is highly sensitive to immune features. Moreover, we revealed that the hypoxia-related genes had potential therapeutic value for LUAD patients based on the drug sensitivity and chemotherapeutic response prediction. The protein and gene expression levels of 10 selected hypoxia gene also showed significant difference between LUAD tumors tissues and normal tissues. The validation experiment showed that the gene transcript levels of most of their genes were consistent with the levels of their translated proteins. Conclusions Our study might contribute to the optimization of risk stratification for survival and personalized management of LUAD patients by using the hypoxia genes, which will provide a valuable resource that will guide both mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ting Yuan
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|