1
|
Nakagomi T. Injury/ischemia-induced stem cells: up-to-date knowledge and future perspectives for neural regeneration. Neural Regen Res 2025; 20:797-798. [PMID: 38886944 PMCID: PMC11433906 DOI: 10.4103/nrr.nrr-d-24-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, Nishinomiya, Japan
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
2
|
Li Z, Wei C, Zhang Z, Han L. ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification. Front Pharmacol 2024; 15:1375112. [PMID: 38666025 PMCID: PMC11043526 DOI: 10.3389/fphar.2024.1375112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named "XGBoost.Enet-stacking-Enet" was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models (https://lizesheng20190820.shinyapps.io/ecGBMsub/).
Collapse
Affiliation(s)
- Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
da Silva Rosa SC, Barzegar Behrooz A, Guedes S, Vitorino R, Ghavami S. Prioritization of genes for translation: a computational approach. Expert Rev Proteomics 2024; 21:125-147. [PMID: 38563427 DOI: 10.1080/14789450.2024.2337004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.
Collapse
Affiliation(s)
- Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Munquad S, Das AB. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. BioData Min 2023; 16:32. [PMID: 37968655 PMCID: PMC10652591 DOI: 10.1186/s13040-023-00349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The classification of glioma subtypes is essential for precision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular pattern can be captured by integrating and analyzing high-throughput omics data from different genomic layers. The development of a deep-learning framework enables the integration of multi-omics data to classify the glioma subtypes to support the clinical diagnosis. RESULTS Transcriptome and methylome data of glioma patients were preprocessed, and differentially expressed features from both datasets were identified. Subsequently, a Cox regression analysis determined genes and CpGs associated with survival. Gene set enrichment analysis was carried out to examine the biological significance of the features. Further, we identified CpG and gene pairs by mapping them in the promoter region of corresponding genes. The methylation and gene expression levels of these CpGs and genes were embedded in a lower-dimensional space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent features from embedding space. CNN performs better than ANN for subtyping lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). The subtyping accuracy of CNN was 98.03% (± 0.06) and 94.07% (± 0.01) in LGG and GBM, respectively. The precision of the models was 97.67% in LGG and 90.40% in GBM. The model sensitivity was 96.96% in LGG and 91.18% in GBM. Additionally, we observed the superior performance of CNN with external datasets. The genes and CpGs pairs used to develop the model showed better performance than the random CpGs-gene pairs, preprocessed data, and single omics data. CONCLUSIONS The current study showed that a novel feature selection and data integration strategy led to the development of DeepAutoGlioma, an effective framework for diagnosing glioma subtypes.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
5
|
Hill CS, Pandit AS. Moving towards a unified classification of glioblastomas utilizing artificial intelligence and deep machine learning integration. Front Oncol 2023; 13:1063937. [PMID: 37427111 PMCID: PMC10327552 DOI: 10.3389/fonc.2023.1063937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/24/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma a deadly brain cancer that is nearly universally fatal. Accurate prognostication and the successful application of emerging precision medicine in glioblastoma relies upon the resolution and exactitude of classification. We discuss limitations of our current classification systems and their inability to capture the full heterogeneity of the disease. We review the various layers of data that are available to substratify glioblastoma and we discuss how artificial intelligence and machine learning tools provide the opportunity to organize and integrate this data in a nuanced way. In doing so there is the potential to generate clinically relevant disease sub-stratifications, which could help predict neuro-oncological patient outcomes with greater certainty. We discuss limitations of this approach and how these might be overcome. The development of a comprehensive unified classification of glioblastoma would be a major advance in the field. This will require the fusion of advances in understanding glioblastoma biology with technological innovation in data processing and organization.
Collapse
Affiliation(s)
- Ciaran Scott Hill
- Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Anand S. Pandit
- Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| |
Collapse
|
6
|
Leng D, Zheng L, Wen Y, Zhang Y, Wu L, Wang J, Wang M, Zhang Z, He S, Bo X. A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Genome Biol 2022; 23:171. [PMID: 35945544 PMCID: PMC9361561 DOI: 10.1186/s13059-022-02739-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A fused method using a combination of multi-omics data enables a comprehensive study of complex biological processes and highlights the interrelationship of relevant biomolecules and their functions. Driven by high-throughput sequencing technologies, several promising deep learning methods have been proposed for fusing multi-omics data generated from a large number of samples. RESULTS In this study, 16 representative deep learning methods are comprehensively evaluated on simulated, single-cell, and cancer multi-omics datasets. For each of the datasets, two tasks are designed: classification and clustering. The classification performance is evaluated by using three benchmarking metrics including accuracy, F1 macro, and F1 weighted. Meanwhile, the clustering performance is evaluated by using four benchmarking metrics including the Jaccard index (JI), C-index, silhouette score, and Davies Bouldin score. For the cancer multi-omics datasets, the methods' strength in capturing the association of multi-omics dimensionality reduction results with survival and clinical annotations is further evaluated. The benchmarking results indicate that moGAT achieves the best classification performance. Meanwhile, efmmdVAE, efVAE, and lfmmdVAE show the most promising performance across all complementary contexts in clustering tasks. CONCLUSIONS Our benchmarking results not only provide a reference for biomedical researchers to choose appropriate deep learning-based multi-omics data fusion methods, but also suggest the future directions for the development of more effective multi-omics data fusion methods. The deep learning frameworks are available at https://github.com/zhenglinyi/DL-mo .
Collapse
Affiliation(s)
- Dongjin Leng
- Institute of Health Service and Transfusion Medicine, Beijing, People’s Republic of China
| | - Linyi Zheng
- School of Informatics, Xiamen University, Xiamen, People’s Republic of China
| | - Yuqi Wen
- Institute of Health Service and Transfusion Medicine, Beijing, People’s Republic of China
| | - Yunhao Zhang
- School of Informatics, Xiamen University, Xiamen, People’s Republic of China
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People’s Republic of China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Meihong Wang
- School of Informatics, Xiamen University, Xiamen, People’s Republic of China
| | - Zhongnan Zhang
- School of Informatics, Xiamen University, Xiamen, People’s Republic of China
| | - Song He
- Institute of Health Service and Transfusion Medicine, Beijing, People’s Republic of China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, People’s Republic of China
| |
Collapse
|