1
|
Wang D, Zhang Y, Li Q, Li Y, Li W, Zhang A, Xu J, Meng J, Tang L, Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis 2024; 11:101020. [PMID: 38988323 PMCID: PMC11233905 DOI: 10.1016/j.gendis.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 07/12/2024] Open
Abstract
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer. Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression. Nevertheless, the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood. Here, we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs. In addition, we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer. However, there are still some challenges in the field of cancer epigenetics, such as epigenetic tumor heterogeneity, epigenetic drug heterogeneity, and crosstalk between epigenetics, proteomics, metabolomics, and other omics, which may be the focus and difficulty of cancer treatment in the future. In conclusion, epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer. Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuhua Lyu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
2
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
3
|
Biskup E, Lopacinska-Jørgensen J, Vestergaard LK, Høgdall E. Validating reference-based algorithms to determine cell-type heterogeneity in ovarian cancer DNA methylation studies. Sci Rep 2024; 14:11048. [PMID: 38745057 PMCID: PMC11094148 DOI: 10.1038/s41598-024-61857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Information about cell composition in tissue samples is crucial for biomarker discovery and prognosis. Specifically, cancer tissue samples present challenges in deconvolution studies due to mutations and genetic rearrangements. Here, we optimized a robust, DNA methylation-based protocol, to be used for deconvolution of ovarian cancer samples. We compared several state-of-the-art methods (HEpiDISH, MethylCIBERSORT and ARIC) and validated the proposed protocol in an in-silico mixture and in an external dataset containing samples from ovarian cancer patients and controls. The deconvolution protocol we eventually implemented is based on MethylCIBERSORT. Comparing deconvolution methods, we paid close attention to the role of a reference panel. We postulate that a possibly high number of samples (in our case: 247) should be used when building a reference panel to ensure robustness and to compensate for biological and technical variation between samples. Subsequently, we tested the performance of the validated protocol in our own study cohort, consisting of 72 patients with malignant and benign ovarian disease as well as in five external cohorts. In conclusion, we refined and validated a reference-based algorithm to determine cell type composition of ovarian cancer tissue samples to be used in cancer biology studies in larger cohorts.
Collapse
Affiliation(s)
- Edyta Biskup
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark.
| | | | | | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
4
|
Lozinski M, Bowden NA, Graves MC, Fay M, Day BW, Stringer BW, Tooney PA. ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines. Oncotarget 2024; 15:1-18. [PMID: 38227740 DOI: 10.18632/oncotarget.28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Nikola A Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Moira C Graves
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Michael Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
- GenesisCare, Newcastle, NSW, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brett W Stringer
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| |
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
6
|
Herzog C, Vavourakis CD, Barrett JE, Karbon G, Villunger A, Wang J, Sundström K, Dillner J, Widschwendter M. HPV-induced host epigenetic reprogramming is lost upon progression to high-grade cervical intraepithelial neoplasia. Int J Cancer 2023; 152:2321-2330. [PMID: 36810770 DOI: 10.1002/ijc.34477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The impact of a pathogen on host disease can only be studied in samples covering the entire spectrum of pathogenesis. Persistent oncogenic human papilloma virus (HPV) infection is the most common cause for cervical cancer. Here, we investigate HPV-induced host epigenome-wide changes prior to development of cytological abnormalities. Using cervical sample methylation array data from disease-free women with or without an oncogenic HPV infection, we develop the WID (Women's cancer risk identification)-HPV, a signature reflective of changes in the healthy host epigenome related to high-risk HPV strains (AUC = 0.78, 95% CI: 0.72-0.85, in nondiseased women). Looking at HPV-associated changes across disease development, HPV-infected women with minor cytological alterations (cervical intraepithelial neoplasia grade 1/2, CIN1/2), but surprisingly not those with precancerous changes or invasive cervical cancer (CIN3+), show an increased WID-HPV index, indicating the WID-HPV may reflect a successful viral clearance response absent in progression to cancer. Further investigation revealed the WID-HPV is positively associated with apoptosis (ρ = 0.48; P < .001) and negatively associated with epigenetic replicative age (ρ = -0.43; P < .001). Taken together, our data suggest the WID-HPV captures a clearance response associated with apoptosis of HPV-infected cells. This response may be dampened or lost with increased underlying replicative age of infected cells, resulting in progression to cancer.
Collapse
Affiliation(s)
- Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Hall in Tirol, Tirol, Austria.,Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Tirol, Austria
| | - Charlotte D Vavourakis
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Hall in Tirol, Tirol, Austria.,Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Tirol, Austria
| | - James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Hall in Tirol, Tirol, Austria.,Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Tirol, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Jiangrong Wang
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Sundström
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Dillner
- Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Hall in Tirol, Tirol, Austria.,Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Tirol, Austria.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|