1
|
Wei S, Zhou J, Dong B. A novel risk model consisting of nine platelet-related gene signatures for predicting prognosis, immune features and drug sensitivity in glioma. Hereditas 2024; 161:52. [PMID: 39707577 DOI: 10.1186/s41065-024-00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in glioma treatment and prognosis remains unclear. RESULTS A prognostic risk model was established using nine platelet-related prognostic signature genes (CAPG, CLIC1, GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1), and the risk score of samples were calculated. Subsequently, the glioma samples were divided into high- and low-risk groups based on the median values of risk scores. scRNA-seq analysis revealed that the prognostic genes were primarily located in astrocytes and natural killer cells. The immune infiltration proportions of most immune cells differed significantly between high- and low-risk groups. Moreover, we found AZD7762 as a potential candidate for glioma treatment. CONCLUSION Nine platelet-related prognostic genes identified as prognostic signatures for glioma were closely associated with the TME and may aid in directing the clinical treatment and prognosis of gliomas.
Collapse
Affiliation(s)
- Sanlin Wei
- Dalian Medical University, Dalian, Liaoning Province, 116000, China
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Junke Zhou
- Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Bin Dong
- Dalian Medical University, Dalian, Liaoning Province, 116000, China.
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
| |
Collapse
|
2
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Cortese M, Torchiaro E, D'Andrea A, Petti C, Invrea F, Franco L, Donini C, Leuci V, Leto SM, Vurchio V, Cottino F, Isella C, Arena S, Vigna E, Bertotti A, Trusolino L, Sangiolo D, Medico E. Preclinical efficacy of a HER2 synNotch/CEA-CAR combinatorial immunotherapy against colorectal cancer with HER2 amplification. Mol Ther 2024; 32:2741-2761. [PMID: 38894542 PMCID: PMC11405179 DOI: 10.1016/j.ymthe.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.
Collapse
MESH Headings
- Colorectal Neoplasms/therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Humans
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Carcinoembryonic Antigen/immunology
- Carcinoembryonic Antigen/genetics
- Gene Amplification
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| | - Erica Torchiaro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Alice D'Andrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Consalvo Petti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Federica Invrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Letizia Franco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Chiara Donini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | | | | | | | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Elisa Vigna
- University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Enzo Medico
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| |
Collapse
|
4
|
Sun JR, Kong CF, Ye YX, Wang Q, Qu XK, Jia LQ, Wu S. Integrated analysis of single-cell and bulk RNA-sequencing reveals a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in gastric cancer. Sci Rep 2024; 14:7648. [PMID: 38561388 PMCID: PMC10985121 DOI: 10.1038/s41598-024-57714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Chen-Fan Kong
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China
| | - Yi-Xiang Ye
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Qin Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Li-Qun Jia
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China.
| | - Song Wu
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
5
|
Ma X, Wei X, Yang G, Li S, Liu R. A Novel Natural Killer Cell-related Gene Signature for Improving the Prediction of Prognosis and Immunotherapy Response in Bladder Cancer. Comb Chem High Throughput Screen 2024; 27:1205-1221. [PMID: 37653625 DOI: 10.2174/1386207326666230831164358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Bladder cancer (BLCA) is a commonly diagnosed cancer worldwide that exhibits high rates of recurrence and metastasis. Immunotherapy is increasingly being recognised in the clinical management of bladder cancer. In addition, the prospect of developing Natural Killer (NK) cell-related immunotherapy is promising in BLCA. METHODS We established and verified a prognostic signature based on NK cell-related gene expression. We then calculated the NKscore of BLCA samples and correlated it with the clinical outcomes, molecular subtypes of BLCA, tumour microenvironment (TME), and predicted efficacy of immune checkpoint inhibitors (ICI) and chemotherapy drugs to thoroughly explore the implications of the NKscore. Finally, the role of the NK signature gene HECTD1 in BLCA was verified by Quantitative Real-time PCR, Cell Counting Kit-8 Assay (CCK-8), Transwell Assay and Colony Formation Experiment. RESULTS We analysed NK cell-associated genes and identified six genes with significant prognostic relevance. A high NK score significantly represents a worse prognosis. NKscore was significantly correlated with seven types of classical molecular subtype classifications of BLCA. In addition, NKscore positively correlates with NK-related immune checkpoints, suggesting that emerging NK cell immune checkpoint inhibitors, such as monalizumab, may have potential therapeutic promise for patients with high NKscore. The results of the T cell inflamed score (TIS) and tumour immune dysfunction exclusion (TIDE) score confirmed the suitability of immunotherapy for patients with a high NK score. Likewise, patients with a high NK score may be more suitable for several significant chemotherapeutic drugs. Functional experiments showed that the knockdown of HECTD1 significantly attenuated the proliferation, migration, and invasion ability of tumour cells. CONCLUSION To sum up, the capability of our signature to predict prognosis and immunotherapy response was robust. Hopefully, these results will provide new insights for BLCA research and patient immunotherapy.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Xifeng Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guanghua Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuai Li
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Li M, Song J, Wang L, Wang Q, Huang Q, Mo D. Natural killer cell-related prognosis signature predicts immune response in colon cancer patients. Front Pharmacol 2023; 14:1253169. [PMID: 38026928 PMCID: PMC10679416 DOI: 10.3389/fphar.2023.1253169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Natural killer (NK) cells are crucial components of the innate immune system that fight tumors and viral infections. Patients with colorectal cancer (CRC) have a poor prognosis, and immunotherapeutic tools play a key role in the treatment of CRC. Methods: Public data on CRC patients was collected from the TCGA and the GEO databases. Tissue data of CRC patients were collected from Guangxi Medical University Affiliated Cancer Hospital. An NK-related prognostic model was developed by the least absolute shrinkage and selection operator (LASSO) and Cox regression method. Validation data were collected from different clinical subgroups and an external independent validation cohort to verify the model's accuracy. In addition, multiple external independent immunotherapy datasets were collected to further examine the value of NK-related risk scores (NKRS) in the prediction of immunotherapy response. Potential biological functions of key genes were examined by methods of cell proliferation, apoptosis and Western blotting. Results: A novel prognostic model for CRC patients based on NK-related genes was developed and NKRS was generated. There was a significantly poorer prognosis among the high-NKRS group. Based on immune response prediction, patients with low NKRS may be more suitable for immunotherapy and they are more sensitive to immunotherapy. The proliferation rate of CRC cells was significantly reduced and apoptosis of CRC cells was increased after SLC2A3 was knocked down. SLC2A3 was also found to be associated with the TGF-β signaling pathway. Conclusion: NKRS has potential applications for predicting prognostic status and response to immunotherapy in CRC patients. SLC2A3 has potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Meiqin Li
- Department of Clinical Laboratory, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Jingqing Song
- Department of Gastrointestinal Surgery, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Lin Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qi Wang
- Department of Basic Medicine, Guangxi Health Science College, Nanning, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Dan Mo
- Department of Breast, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
7
|
Zhang L, Zhang Y, Wang X, Zhou Y, Qi J, Gu L, Zhao Q, Yu R, Zhou X. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301439. [PMID: 37420326 DOI: 10.1002/smll.202301439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Although the chemo- and immuno-therapies have obtained good responses for several solid tumors, including those with brain metastasis, their clinical efficacy in glioblastoma (GBM) is disappointing. The lack of safe and effective delivery systems across the blood-brain barrier (BBB) and the immunosuppressive tumor microenvironment (TME) are two main hurdles for GBM therapy. Herein, a Trojan-horse-like nanoparticle system is designed, which encapsulates biocompatible PLGA-coated temozolomide (TMZ) and IL-15 nanoparticles (NPs) with cRGD-decorated NK cell membrane (R-NKm@NP), to elicit the immunostimulatory TME for GBM chemo-immunotherapy. Taking advantage of the outer NK cell membrane cooperating with cRGD, the R-NKm@NPs effectively traversed across the BBB and targeted GBM. In addition, the R-NKm@NPs exhibited good antitumor ability and prolonged the median survival of GBM-bearing mice. Notably, after R-NKm@NPs treatment, the locally released TMZ and IL-15 synergistically stimulated the proliferation and activation of NK cells, leading to the maturation of dendritic cells and infiltration of CD8+ cytotoxic T cells, eliciting an immunostimulatory TME. Lastly, the R-NKm@NPs not only effectively prolonged the metabolic cycling time of the drugs in vivo, but also has no noticeable side effects. This study may offer valuable insights for developing biomimetic nanoparticles to potentiate GBM chemo- and immuno-therapies in the future.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yining Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ji Qi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Linbo Gu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qiu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, Anhui, 230001, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 2210002, China
| |
Collapse
|
8
|
Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res 2023; 28:306. [PMID: 37649103 PMCID: PMC10466881 DOI: 10.1186/s40001-023-01300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
Collapse
Affiliation(s)
- Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| |
Collapse
|
9
|
Prognostic Model for Clear-cell Renal Cell Carcinoma Based on Natural Killer Cell-related Genes. Clin Genitourin Cancer 2022; 21:e126-e137. [PMID: 36513558 DOI: 10.1016/j.clgc.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Natural killer (NK) cells are a key factor affecting progression and immune surveillance of clear-cell renal cell carcinoma (ccRCC). This study sought to construct a natural killer cell-related prognostic signature (NKRPS) to predict the outcome of ccRCC patients and to furnish guidance for finding appropriate treatment strategies. METHODS From the TCGA and ArrayExpress databases, transcriptomic profiles and relevant clinical information of ccRCC patients were downloaded for the TCGA cohort (n = 515) and the E-MTAB-1980 cohort (n = 101). With the univariate Cox analysis and LASSO-Cox regression algorithm, a NKRPS was built to evaluate patients' prognosis. Receiver operating characteristic (ROC) curves and calibration curves were drawn to estimate the predictive power of the prognostic model. Then, tumor microenvironment (TME), tumor mutational burden (TMB), sensitization to immune checkpoint inhibitors (ICIs) therapy and targeted drug treatment were analyzed in ccRCC patients. RESULTS Nine genes (BID, CCL7, CSF2, IL23A, KNSTRN, RHBDD3, PIK3R3, RNF19B and VAV3) were identified to construct a NKRPS. High-risk group displayed undesirable survival compared to low-risk group (P < .05). Moreover, the area under the curve (AUC) of ROC at 1-, 3- and 5-year were 0.766, 0.755, and 0.757, respectively. High-risk group was characterized by superior immune infiltration, higher TMB, and higher expression of 5 ICI-related genes. Additionally, this model enabled to predict the sensitivity of patients to chemotherapy drugs. CONCLUSION NKRPS had a strong predictive power on prognosis of ccRCC patients, which may facilitate individualized treatment and medical decision making.
Collapse
|
10
|
Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, Zhao S, Xia Z, Tian G. Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of HNSCC. Front Immunol 2022; 13:1018685. [PMID: 36263048 PMCID: PMC9575041 DOI: 10.3389/fimmu.2022.1018685] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies’ development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients. Methods In this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the “limma” R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website. Results With the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy. Conclusions 17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yingjie Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Gang Tian,
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhijia Xia, ; Gang Tian,
| |
Collapse
|
11
|
Hu T, Wang Y, Wang X, Wang R, Song Y, Zhang L, Han S. Construction and validation of an angiogenesis-related gene expression signature associated with clinical outcome and tumor immune microenvironment in glioma. Front Genet 2022; 13:934683. [PMID: 36035133 PMCID: PMC9403517 DOI: 10.3389/fgene.2022.934683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Glioma is the most prevalent malignant intracranial tumor. Many studies have shown that angiogenesis plays a crucial role in glioma tumorigenesis, metastasis, and prognosis. In this study, we conducted a comprehensive analysis of angiogenesis-related genes (ARGs) in glioma. Methods: RNA-sequencing data of glioma patients were obtained from TCGA and CGGA databases. Via consensus clustering analysis, ARGs in the sequencing data were distinctly classified into two subgroups. We performed univariate Cox regression analysis to determine prognostic differentially expressed ARGs and least absolute shrinkage and selection operator Cox regression to construct a 14-ARG risk signature. The CIBERSORT algorithm was used to explore immune cell infiltration, and the ESTIMATE algorithm was applied to calculate immune and stromal scores. Results: We found that the 14-ARG signature reflected the infiltration characteristics of different immune cells in the tumor immune microenvironment. Additionally, total tumor mutational burden increased significantly in the high-risk group. We combined the 14-ARG signature with patient clinicopathological data to construct a nomogram for predicting 1-, 3-, and 5-year overall survival with good accuracy. The predictive value of the prognostic model was verified in the CGGA cohort. SPP1 was a potential biomarker of glioma risk and was involved in the proliferation, invasion, and angiogenesis of glioma cells. Conclusion: In conclusion, we established and validated a novel ARG risk signature that independently predicted the clinical outcomes of glioma patients and was associated with the tumor immune microenvironment.
Collapse
Affiliation(s)
- Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Li Zhang, ; Sheng Han,
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Li Zhang, ; Sheng Han,
| |
Collapse
|