1
|
Kunimoto H, Miura A, Maeda A, Tsuchida N, Uchiyama Y, Kunishita Y, Nakajima Y, Takase-Minegishi K, Yoshimi R, Miyazaki T, Hagihara M, Yamazaki E, Kirino Y, Matsumoto N, Nakajima H. Clinical and genetic features of Japanese cases of MDS associated with VEXAS syndrome. Int J Hematol 2023; 118:494-502. [PMID: 37062784 DOI: 10.1007/s12185-023-03598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a new disease entity with autoinflammatory disorders (AID) driven by somatic variants in UBA1 that frequently co-exists with myelodysplastic syndromes (MDS). Clinicopathological and molecular features of Japanese cases with VEXAS-associated MDS remain elusive. We previously reported high prevalence of UBA1 variants in Japanese patients with relapsing polychondritis, in which 5 cases co-occurred with MDS. Here, we report clinicopathological and variant profiles of these 5 cases and 2 additional cases of MDS associated with VEXAS syndrome. Clinical characteristics of these cases included high prevalence of macrocytic anemia with marked cytoplasmic vacuoles in myeloid/erythroid precursors and low bone marrow (BM) blast percentages. All cases were classified as low or very low risk by the revised international prognostic scoring system (IPSS-R). Notably, 4 out of 7 cases showed significant improvement of anemia by treatment with prednisolone (PSL) or cyclosporin A (CsA), suggesting that an underlying inflammatory milieu induced by VEXAS syndrome may aggravate macrocytic anemia in VEXAS-associated MDS. Targeted deep sequencing of blood samples suggested that MDS associated with VEXAS syndrome tends to involve a smaller number of genes and lower risk genetic lesions than classical MDS.
Collapse
Affiliation(s)
- Hiroyoshi Kunimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ayaka Miura
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ayaka Maeda
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Takuya Miyazaki
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Maki Hagihara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Etsuko Yamazaki
- Clinical Laboratory Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
2
|
Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 2023; 23:595-610. [PMID: 36941354 PMCID: PMC11140722 DOI: 10.1038/s41577-023-00843-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Collapse
Affiliation(s)
- Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Robinette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
4
|
López-Nevado M, Ortiz-Martín J, Serrano C, Pérez-Saez MA, López-Lorenzo JL, Gil-Etayo FJ, Rodríguez-Frías E, Cabrera-Marante O, Morales-Pérez P, Rodríguez-Pinilla MS, Manso R, Salgado-Sánchez RN, Cerdá-Montagud A, Quesada-Espinosa JF, Gómez-Rodríguez MJ, Paz-Artal E, Muñoz-Calleja C, Arranz-Sáez R, Allende LM. Novel Germline TET2 Mutations in Two Unrelated Patients with Autoimmune Lymphoproliferative Syndrome-Like Phenotype and Hematologic Malignancy. J Clin Immunol 2023; 43:165-180. [PMID: 36066697 DOI: 10.1007/s10875-022-01361-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
Somatic mutations in the ten-eleven translocation methylcytosine dioxygenase 2 gene (TET2) have been associated to hematologic malignancies. More recently, biallelic, and monoallelic germline mutations conferring susceptibility to lymphoid and myeloid cancer have been described. We report two unrelated autoimmune lymphoproliferative syndrome-like patients who presented with T-cell lymphoma associated with novel germline biallelic or monoallelic mutations in the TET2 gene. Both patients presented a history of chronic lymphoproliferation with lymphadenopathies and splenomegaly, cytopenias, and immune dysregulation. We identified the first compound heterozygous patient for TET2 mutations (P1) and the first ALPS-like patient with a monoallelic TET2 mutation (P2). P1 had the most severe form of autosomal recessive disease due to TET2 loss of function resulting in absent TET2 expression and profound increase in DNA methylation. Additionally, the immunophenotype showed some alterations in innate and adaptive immune system as inverted myeloid/plasmacytoid dendritic cells ratio, elevated terminally differentiated effector memory CD8 + T-cells re-expressing CD45RA, regulatory T-cells, and Th2 circulating follicular T-cells. Double-negative T-cells, vitamin B12, and IL-10 were elevated according to the ALPS-like suspicion. Interestingly, the healthy P1's brother carried a TET2 mutation and presented some markers of immune dysregulation. P2 showed elevated vitamin B12, hypergammaglobulinemia, and decreased HDL levels. Therefore, novel molecular defects in TET2 confirm and expand both clinical and immunological phenotype, contributing to a better knowledge of the bridge between cancer and immunity.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain.
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain.
| | | | - Cristina Serrano
- Immunology Department, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - María A Pérez-Saez
- Hematology Department, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - José L López-Lorenzo
- Hematology Department, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Francisco J Gil-Etayo
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Edgar Rodríguez-Frías
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pablo Morales-Pérez
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Rebeca Manso
- Pathology Department, Research Institute Fundación Jiménez Díaz, Madrid, Spain
| | | | - Ana Cerdá-Montagud
- Hematology Department, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Juan F Quesada-Espinosa
- Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
- UDisGen (Unidad de Dismorfología Y Genética), University Hospital 12 de Octubre, Madrid, Spain
| | - María J Gómez-Rodríguez
- Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
- UDisGen (Unidad de Dismorfología Y Genética), University Hospital 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, University Hospital La Princesa, Madrid, Spain
- School of Medicine, University Autónoma de Madrid, Madrid, Spain
- Research Institute Hospital de La Princesa, Madrid, Spain
| | - Reyes Arranz-Sáez
- Hematology Department, University Hospital La Princesa, Madrid, Spain
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Av de Córdoba s/n, 28041, Madrid, Spain.
- Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|