1
|
Chen F, Chen L. CRISPR/Cas-mediated macromolecular DNA methylation editing: Precision targeting of DNA methyltransferases in cancer therapy. Int J Biol Macromol 2025; 308:142401. [PMID: 40132699 DOI: 10.1016/j.ijbiomac.2025.142401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Epigenetic modifications, particularly DNA methylation, play a pivotal role in gene regulation, influencing tumor suppressor silencing and oncogene activation in cancer. DNA methyltransferases (DNMTs), Ten-eleven translocation (TET) enzymes, and associated chromatin regulators are key biological macromolecules that mediate these epigenetic processes. Targeting aberrant DNA methylation holds great promise for cancer therapy, but traditional approaches lack precision and specificity. CRISPR/Cas-based epigenetic editing has emerged as a transformative tool for macromolecular DNA methylation reprogramming, offering targeted modifications without altering the genetic sequence. This review explores the role of DNMTs, TET enzymes, and chromatin-associated proteins in cancer epigenetics and discusses how CRISPR/dCas9 fused with DNMT3A or TET1 enables locus-specific DNA methylation editing. We highlight recent advances, including dCas9-DNMT3A for precise hypermethylation and dCas9-TET1 for targeted demethylation, and discuss their applications in reactivating tumor suppressor genes or silencing oncogenic pathways. Novel epigenetic editing systems, such as SunTag-based amplification, KRAB-MeCP2 repression, further enhance targeting efficiency and therapeutic potential. CRISPR/Cas-mediated macromolecular epigenetic editing represents a paradigm shift in cancer therapy, providing unprecedented control over DNA methylation and chromatin regulation. Despite challenges such as tumor heterogeneity and off-target effects, integrating CRISPR-based methylation reprogramming with precision oncology holds immense promise for future clinical applications.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu Province, China.
| | - Lu Chen
- Pharma Technology A/S, Åshøjvej 24, 4600, Køge, Denmark.
| |
Collapse
|
2
|
Torres-Llanos Y, Zabaleta J, Cruz-Rodriguez N, Quijano S, Guzmán PC, de los Reyes I, Poveda-Garavito N, Infante A, Lopez-Kleine L, Combita AL. MIR4435-2HG as a possible novel predictive biomarker of chemotherapy response and death in pediatric B-cell ALL. Front Mol Biosci 2024; 11:1385140. [PMID: 38745909 PMCID: PMC11091394 DOI: 10.3389/fmolb.2024.1385140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Although B-cell acute lymphoblastic leukemia (B-cell ALL) survival rates have improved in recent years, Hispanic children continue to have poorer survival rates. There are few tools available to identify at the time of diagnosis whether the patient will respond to induction therapy. Our goal was to identify predictive biomarkers of treatment response, which could also serve as prognostic biomarkers of death, by identifying methylated and differentially expressed genes between patients with positive minimal residual disease (MRD+) and negative minimal residual disease (MRD-). Methods: DNA and RNA were extracted from tumor blasts separated by immunomagnetic columns. Illumina MethlationEPIC and mRNA sequencing assays were performed on 13 bone marrows from Hispanic children with B-cell ALL. Partek Flow was used for transcript mapping and quantification, followed by differential expression analysis using DEseq2. DNA methylation analyses were performed with Partek Genomic Suite and Genome Studio. Gene expression and differential methylation were compared between patients with MRD-/- and MRD+/+ at the end of induction chemotherapy. Overexpressed and hypomethylated genes were selected and validated by RT-qPCR in samples of an independent validation cohort. The predictive ability of the genes was assessed by logistic regression. Survival and Cox regression analyses were performed to determine the association of genes with death. Results: DAPK1, BOC, CNKSR3, MIR4435-2HG, CTHRC1, NPDC1, SLC45A3, ITGA6, and ASCL2 were overexpressed and hypomethylated in MRD+/+ patients. Overexpression was also validated by RT-qPCR. DAPK1, BOC, ASCL2, and CNKSR3 can predict refractoriness, but MIR4435-2HG is the best predictor. Additionally, higher expression of MIR4435-2HG increases the probability of non-response, death, and the risk of death. Finally, MIR4435-2HG overexpression, together with MRD+, are associated with poorer survival, and together with overexpression of DAPK1 and ASCL2, it could improve the risk classification of patients with normal karyotype. Conclusion: MIR4435-2HG is a potential predictive biomarker of treatment response and death in children with B-cell ALL.
Collapse
Affiliation(s)
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Sandra Quijano
- Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | - Ana Infante
- Department of Pediatrics, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Alba Lucía Combita
- Cancer Biology Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Wu DL, Wang Y, Zhang TJ, Chu MQ, Xu ZJ, Yuan Q, Ma JC, Lin J, Qian J, Zhou JD. SLIT2 promoter hypermethylation predicts disease progression in chronic myeloid leukemia. Eur J Med Res 2022; 27:259. [PMID: 36411451 PMCID: PMC9677675 DOI: 10.1186/s40001-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation plays a crucial role in the progression of myeloid neoplasms. Previously, our literature reported that slit guidance ligand 2 (SLIT2) promoter methylation was associated with disease progression and indicated a poor prognosis in patients with myelodysplastic syndrome. Herein, we further investigated the clinical implications and role of SLIT2 promoter methylation in patients with chronic myeloid leukemia (CML). METHODS The level of SLIT2 promoter methylation was determined in 104 CML patients, and its clinical significance was analyzed. Moreover, demethylation studies were performed in K562 cells to determine the epigenetic mechanism by which SLIT2 promoter methylation is regulated in CML. RESULTS The level of SLIT2 promoter methylation was similar between CML patients and controls. However, deeper analysis revealed that the SLIT2 promoter methylation level in the accelerated phase (AP) and blast crisis (BC) was markedly higher than that in the chronic phase (CP) and controls. Additionally, a marked difference was identified between the SLIT2 promoter hypermethylated and non-hypermethylated groups among CML patients grouped by clinical stage. The frequency of SLIT2 hypermethylation was markedly increased with the progression of clinical stage, that is, it was the lowest in CP samples (12/80, 15%), higher in AP samples (4/8, 50%) and the highest in BC samples (11/16, 69%). Importantly, the level/density of SLIT2 promoter methylation was significantly higher in the advanced stage than in the early stage among the 6 tested paired CML patients. Epigenetically, the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 expression was decreased in patients with CML. SLIT2 promoter hypermethylated cases had a markedly lower SLIT2-IT1 expression level than SLIT2 promoter non-hypermethylated cases. Moreover, SLIT2-IT1 and miR-218 expression was remarkably upregulated in a dose-dependent manner after demethylation treatment of K562 cells. CONCLUSIONS Hypermethylation of the SLIT2 promoter is correlated with disease progression in CML. Furthermore, SLIT2 promoter methylation may function by regulating the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 during CML progression.
Collapse
Affiliation(s)
- De-long Wu
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,Department of Oncology, Dongtai People’s Hospital, Dongtai, Jiangsu People’s Republic of China
| | - Yun Wang
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Ming-qiang Chu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Qian Yuan
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jun Qian
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jing-dong Zhou
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| |
Collapse
|
4
|
Guru SA, Sumi MP, Mir R, Beg MMA, Koner BC, Saxena A. Correction: Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 2022; 22:439. [PMID: 35459155 PMCID: PMC9027819 DOI: 10.1186/s12885-022-09568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sameer Ahmad Guru
- Lurie Children's Hospital and Stanley Manne Children's Research Institute, Northwestern University, Chicago, IL, USA.,Department of Biochemistry, Multidisciplinary Research Unit (MRU), Maulana Azad Medical College, New Delhi, India
| | - Mamta Pervin Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleve Land Clinic OH, Cleveland, USA
| | - Rashid Mir
- Kingdom of Saudi Arabia, University of Tabuk, Tabuk, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine and Center for Promotion of Medical Research, Faculty of Medical Sciences, Ala-Too International University, Bishek, Kyrgyzstan
| | - Bidhan Chandra Koner
- Department of Biochemistry, Hamdard Institute of Medical Science and Research (HIMSR), New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Multidisciplinary Research Unit (MRU), Maulana Azad Medical College, New Delhi, India. .,Department of Biochemistry, Hamdard Institute of Medical Science and Research (HIMSR), New Delhi, India.
| |
Collapse
|