1
|
Souza da Silva R, Schmitt F. Minimally Invasive, Maximally Effective: The Power of Precision Cytoanalysis on Effusion Samples-A Comprehensive Exploration from Traditional Methods to Innovative Approaches. Surg Pathol Clin 2024; 17:453-481. [PMID: 39129143 DOI: 10.1016/j.path.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Precision medicine translates through molecular assays and in minimally invasive diagnosis, evident in analyses of effusions that serve therapeutic and diagnostic purposes. This cost-effective and low-risk approach provides advantages, playing a pivotal role in late-stage oncology and frequently standing as the primary resource for cancer diagnosis and treatment pathways. This article outlines the workflow for managing serous fluid and explores how cytology effusion analysis extends beyond immunocytological diagnosis. Combined with current molecular tests it showcases the potential to be a skillful tool in precision cytopathology.
Collapse
Affiliation(s)
- Ricella Souza da Silva
- IPATIMUP Diagnostics, IPATIMUP-Institute of Molecular Pathology and Immunology of Porto University, Porto, 4200-135, Portugal
| | - Fernando Schmitt
- IPATIMUP Diagnostics, IPATIMUP-Institute of Molecular Pathology and Immunology of Porto University, Porto, 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto, 4200-319, Portugal; CINTESIS@RISE (Health Research Network), Porto, 4200-319, Portugal.
| |
Collapse
|
2
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Lin Y, Ho C, Hsu W, Liao W, Yang C, Yu C, Tsai T, Yang JC, Wu S, Hsu C, Hsieh M, Huang Y, Wu C, Shih J. Tissue or liquid rebiopsy? A prospective study for simultaneous tissue and liquid NGS after first-line EGFR inhibitor resistance in lung cancer. Cancer Med 2024; 13:e6870. [PMID: 38140788 PMCID: PMC10807591 DOI: 10.1002/cam4.6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION According to current International Association for the Study of Lung Cancer guideline, physicians may first use plasma cell-free DNA (cfDNA) methods to identify epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant mechanisms (liquid rebiopsy) for lung cancer. Tissue rebiopsy is recommended if the plasma result is negative. However, this approach has not been evaluated prospectively using next-generation sequencing (NGS). METHODS We prospectively enrolled patients with lung cancer with first-line EGFR-TKI resistance who underwent tissue rebiopsy. The rebiopsied tissues and cfDNA were sequenced using targeted NGS, ACTDrug®+, and ACTMonitor®Lung simultaneously. The clinicopathological characteristics and treatment outcomes were analyzed. RESULTS Totally, 86 patients were enrolled. Twenty-six (30%) underwent tissue biopsy but the specimens were inadequate for NGS. Among the 60 patients with paired tissue and liquid rebiopsies, two-thirds (40/60) may still be targetable. T790M mutations were found in 29, including 14 (48%) only from tissue and 5 (17%) only from cfDNA. Twenty-four of them were treated with osimertinib, and progression-free survival was longer in patients without detectable T790M in cfDNA than in patients with detectable T790M in cfDNA (p = 0.02). For the 31 T790M-negative patients, there were six with mesenchymal-epithelial transition factor (MET) amplifications, four with ERBB2 amplifications, and one with CCDC6-RET fusion. One with MET amplification and one with ERBB2 amplification responded to subsequent MET and ERBB2 targeting agents respectively. CONCLUSIONS NGS after EGFR-TKI resistance may detect targetable drivers besides T790M. To do either liquid or tissue NGS only could miss patients with T790M. To do tissue and liquid NGS in parallel after EGFR-TKI resistance may find more patients with targetable cancers.
Collapse
Affiliation(s)
- Yen‐Ting Lin
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
- Department of MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chao‐Chi Ho
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Wei‐Hsun Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Wei‐Yu Liao
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ching‐Yao Yang
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chong‐Jen Yu
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Tzu‐Hsiu Tsai
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - James Chih‐Hsin Yang
- Department of Medical OncologyNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of OncologyNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of OncologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Shang‐Gin Wu
- Department of MedicineNational Taiwan University Cancer CenterTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Lin Hsu
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Min‐Shu Hsieh
- Department of PathologyNational Taiwan University HospitalTaipeiTaiwan
- Department of PathologyNational Taiwan University Cancer CenterTaipeiTaiwan
| | - Yen‐Lin Huang
- Department of PathologyNational Taiwan University Cancer CenterTaipeiTaiwan
| | | | - Jin‐Yuan Shih
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
4
|
Allan Z, Witts S, Tie J, Tebbutt N, Clemons NJ, Liu DS. The prognostic impact of peritoneal tumour DNA in gastrointestinal and gynaecological malignancies: a systematic review. Br J Cancer 2023; 129:1717-1726. [PMID: 37700064 PMCID: PMC10667497 DOI: 10.1038/s41416-023-02424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Peritoneal metastases from various abdominal cancer types are common and carry poor prognosis. The presence of peritoneal disease upstages cancer diagnosis and alters disease trajectory and treatment pathway in many cancer types. Therefore, accurate and timely detection of peritoneal disease is crucial. The current practice of diagnostic laparoscopy and peritoneal lavage cytology (PLC) in detecting peritoneal disease has variable sensitivity. The significant proportion of peritoneal recurrence seen during follow-up in patients where initial PLC was negative indicates the ongoing need for a better diagnostic tool for detecting clinically occult peritoneal disease, especially peritoneal micro-metastases. Advancement in liquid biopsy has allowed the development and use of peritoneal tumour DNA (ptDNA) as a cancer-specific biomarker within the peritoneum, and the presence of ptDNA may be a surrogate marker for early peritoneal metastases. A growing body of literature on ptDNA in different cancer types portends promising results. Here, we conduct a systematic review to evaluate the prognostic impact of ptDNA in various cancer types and discuss its potential future clinical applications, with a focus on gastrointestinal and gynaecological malignancies.
Collapse
Affiliation(s)
- Zexi Allan
- Division of Cancer Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3000, Australia.
| | - Sasha Witts
- Division of Cancer Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
| | - Jeanne Tie
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3000, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Niall Tebbutt
- Department of Surgery, University of Melbourne, Grattan Street, Parkville, VIC, 3000, Australia
- Department of Medical Oncology, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3000, Australia
| | - David S Liu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Upper Gastrointestinal Surgery Unit, Division of Surgery, Anaesthesia, and Procedural Medicine, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- General and Gastrointestinal Surgery Research and Trials Group, The University of Melbourne Department of Surgery, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
5
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
6
|
Önder CE, Ziegler TJ, Becker R, Brucker SY, Hartkopf AD, Engler T, Koch A. Advancing Cancer Therapy Predictions with Patient-Derived Organoid Models of Metastatic Breast Cancer. Cancers (Basel) 2023; 15:3602. [PMID: 37509265 PMCID: PMC10377262 DOI: 10.3390/cancers15143602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The poor outcome of metastasized breast cancer (BC) stresses the need for reliable personalized oncology and the significance of models recapitulating the heterogeneous nature of BC. Here, we cultured metastatic tumor cells derived from advanced BC patients with malignant ascites (MA) or malignant pleural effusion (MPE) using organoid technology. We identified the characteristics of tumor organoids by applying immunohistochemistry and mutation analysis. Tumor organoids preserved their expression patterns and hotspot mutations when compared to their original metastatic counterpart and are consequently a well-suited in vitro model for metastasized BC. We treated the tumor organoids to implement a reliable application for drug screenings of metastasized cells. Drug assays revealed that responses are not always in accord with expression patterns, pathway activation, and hotspot mutations. The discrepancy between characterization and functional testing underlines the relevance of linking IHC stainings and mutational analysis of metastasized BC with in vitro drug assays. Our metastatic BC organoids recapitulate the characteristics of their original sample derived from MA and MPE and serve as an invaluable tool that can be utilized in a preclinical setting for guiding therapy decisions.
Collapse
Affiliation(s)
- Cansu E Önder
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Teresa J Ziegler
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Ronja Becker
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y Brucker
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas D Hartkopf
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Engler
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, Spada D, Baiocchi GL, Ghidini M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int J Mol Sci 2023; 24:ijms24119421. [PMID: 37298371 DOI: 10.3390/ijms24119421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Gastric cancer (GC) is still one of the most aggressive cancers with a few targetable alterations and a dismal prognosis. A liquid biopsy allows for identifying and analyzing the DNA released from tumor cells into the bloodstream. Compared to tissue-based biopsy, liquid biopsy is less invasive, requires fewer samples, and can be repeated over time in order to longitudinally monitor tumor burden and molecular changes. Circulating tumor DNA (ctDNA) has been recognized to have a prognostic role in all the disease stages of GC. The aim of this article is to review the current and future applications of ctDNA in gastric adenocarcinoma, in particular, with respect to early diagnosis, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision choice and therapeutic monitoring. Although liquid biopsies have shown potentiality, pre-analytical and analytical steps must be standardized and validated to ensure the reproducibility and standardization of the procedures and data analysis methods. Further research is needed to allow the use of liquid biopsy in everyday clinical practice.
Collapse
Affiliation(s)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Bonomi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy
| | | | - Lauren Holladay
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
8
|
Zhu J, Zhu X, Xie F, Ding Y, Lu H, Dong Y, Li P, Fu J, Liang A, Zeng Y, Xiu B. Case report: Circulating tumor DNA technology displays temporal and spatial heterogeneity in Waldenström macroglobulinemia during treatment with BTK inhibitors. Pathol Oncol Res 2023; 29:1611070. [PMID: 37151353 PMCID: PMC10154527 DOI: 10.3389/pore.2023.1611070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Background: Waldenström macroglobulinemia (WM) is a rare subtype of B-cell lymphoma. Rituximab-based combination therapy and Bruton's tyrosine kinase (BTK) inhibitors have greatly improved the prognosis of WM. Despite the high response rate and good tolerance of BTK inhibitors in treatment of WM, a proportion of patients still experience disease progression. Case presentation: We report a 55-year-old man with relapsed WM. The patient achieved partial remission after six courses of CHOP chemotherapy and multiple plasma exchanges in initial treatment. He was admitted to the hospital with abdominal distension, and was diagnosed with relapsed WM and subsequently started on zanubrutinib. Disease progression and histological transformation occurred during treatment. We performed liquid biopsies on transformed plasma, tumor tissue and ascites at the same time and found high consistency between ascites and tissues. Moreover, we detected resistance mutations of BTK inhibitors (BTK, PLCG2) in ascites that were not detected in plasma or tissue. Eventually, the patient died during the 15-month follow-up after relapse. Conclusion: We describe a rare case of WM transformation to DLCBCL treated with chemoimmunotherapy and BTK inhibition. We analyzed tumor DNA obtained at different anatomic sites and circulating tumor DNA (ctDNA) derived from plasma and ascites specimens, with apparent significant temporal and spatial heterogeneity. The case specifically highlights the clinical value of ctDNA of ascites supernatant from WM patients, which is a more convenient and relatively noninvasive method compared with traditional invasive tissue biopsy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Zhu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Ding
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huina Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfei Fu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zeng
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yu Zeng, ; Bing Xiu,
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yu Zeng, ; Bing Xiu,
| |
Collapse
|