1
|
Wang C, Chen Y, Yin X, Xu R, Ruze R, Song J, Hu C, Zhao Y. Immune-related signature identifies IL1R2 as an immunological and prognostic biomarker in pancreatic cancer. JOURNAL OF PANCREATOLOGY 2024; 7:119-130. [PMID: 38883575 PMCID: PMC11175735 DOI: 10.1097/jp9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/17/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Pancreatic cancer is one of the most aggressive malignancies, a robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and optimization of clinical decision-making. Methods A list of bioinformatic analysis were applied in public dataset to construct an immune-related signature. Furthermore, the most pivotal gene in the signature was identified. The potential mechanism of the core gene function was revealed through GSEA, CIBERSORT, ESTIMATE, immunophenoscore (IPS) algorithm, single-cell analysis, and functional experiment. Results An immune-related prognostic signature and associated nomogram were constructed and validated. Among the genes constituting the signature, interleukin 1 receptor type II (IL1R2) was identified as the gene occupying the most paramount position in the risk signature. Meanwhile, knockdown of IL1R2 significantly inhibited the proliferation, invasion, and migration ability of pancreatic cancer cells. Additionally, high IL1R2 expression was associated with reduced CD8+ T cell infiltration in pancreatic cancer microenvironment, which may be due to high programmed cell death-ligand-1 (PD-L1) expression in cancer cells. Finally, the IPS algorithm proved that patients with high IL1R2 expression possessed a higher tumor mutation burden and a higher probability of benefiting from immunotherapy. Conclusion In conclusion, our study constructed an efficient immune-related prognostic signature and identified the key role of IL1R2 in the development of pancreatic cancer, as well as its potential to serve as a biomarker for immunotherapy efficacy prediction for pancreatic cancer.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
| | - Yuan Chen
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Xinpeng Yin
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Ruiyuan Xu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Rexiati Ruze
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Jianlu Song
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Chenglin Hu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| | - Yupei Zhao
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100023, P.R. China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100023, P.R. China
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, P.R. China
| |
Collapse
|
2
|
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int J Mol Sci 2024; 25:3914. [PMID: 38612727 PMCID: PMC11011772 DOI: 10.3390/ijms25073914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.
Collapse
Affiliation(s)
| | | | - Juan Cui
- School of Computing, University of Nebraska—Lincoln, Lincoln, NE 68588, USA; (R.M.); (T.A.)
| |
Collapse
|
3
|
Zang L, Zhang B, Zhou Y, Zhang F, Tian X, Tian Z, Chen D, Miao Q. Machine learning algorithm integrates bulk and single-cell transcriptome sequencing to reveal immune-related personalized therapy prediction features for pancreatic cancer. Aging (Albany NY) 2023; 15:14109-14140. [PMID: 38095640 PMCID: PMC10756117 DOI: 10.18632/aging.205293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Pancreatic cancer (PC) is a digestive malignancy with worse overall survival. Tumor immune environment (TIME) alters the progression and proliferation of various solid tumors. Hence, we aimed to detect the TIME-related classifier to facilitate the personalized treatment of PC. Based on the 1612 immune-related genes (IRGs), we classified patients into Immune_rich and Immune_desert subgroups via consensus clustering. Patients in distinct subtypes exhibited a difference in sensitivity to immune checkpoint blockers (ICB). Next, the immune-related signature (IRS) model was established based on 8 IRGs (SYT12, TNNT1, TRIM46, SMPD3, ANLN, AFF3, CXCL9 and RP1L1) and validated its predictive efficiency in multiple cohorts. RT-qPCR experiments demonstrated the differential expression of 8 IRGs between tumor and normal cell lines. Patients who gained lower IRS score tended to be more sensitive to chemotherapy and immunotherapy, and obtained better overall survival compared to those with higher IRS scores. Moreover, scRNA-seq analysis revealed that fibroblast and ductal cells might affect malignant tumor cells via MIF-(CD74+CD44) and SPP1-CD44 axis. Eventually, we identified eight therapeutic targets and one agent for IRS high patients. Our study screened out the specific regulation pattern of TIME in PC, and shed light on the precise treatment of PC.
Collapse
Affiliation(s)
- Longjun Zang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Baoming Zhang
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Yanling Zhou
- University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Fusheng Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Zhongming Tian
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| | - Dongjie Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Qingwang Miao
- Department of General Surgery, Taiyuan Central Hospital, Taiyuan 030009, Shanxi, P.R. China
| |
Collapse
|
4
|
Hao W, Zhang Y, Dou J, Cui P, Zhu J. S100P as a potential biomarker for immunosuppressive microenvironment in pancreatic cancer: a bioinformatics analysis and in vitro study. BMC Cancer 2023; 23:997. [PMID: 37853345 PMCID: PMC10585823 DOI: 10.1186/s12885-023-11490-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Immunosuppression is a significant factor contributing to the poor prognosis of cancer. S100P, a member of the S100 protein family, has been implicated in various cancers. However, its role in the tumor microenvironment (TME) of pancreatic cancer remains unclear. This study aimed to investigate the potential impact of S100P on TME characteristics in patients with pancreatic cancer. METHODS Multiple data (including microarray, RNA-Seq, and scRNA-Seq) were obtained from public databases. The expression pattern of S100P was comprehensively evaluated in RNA-Seq data and validated in four different microarray datasets. Prognostic value was assessed through Kaplan-Meier plotter and Cox regression analyses. Immune infiltration levels were determined using the ESTIMATE and ssGSEA algorithms and validated at the single-cell level. Spearman correlation test was used to examine the correlation between S100P expression and immune checkpoint genes, and tumor mutation burden (TMB). DNA methylation analysis was performed to investigate the change in mRNA expression. Reverse transcription PCR (RT-PCR) and immunohistochemical (IHC) were utilized to validate the expression using five cell lines and 60 pancreatic cancer tissues. RESULTS This study found that S100P was differentially expressed in pancreatic cancer and was associated with poor prognosis (P < 0.05). Notably, S100P exhibited a significant negative-correlation with immune cell infiltration, particularly CD8 + T cells. Furthermore, a close association between S100P and immunotherapy was observed, as it strongly correlated with TMB and the expression levels of TIGIT, HAVCR2, CTLA4, and BTLA (P < 0.05). Intriguingly, higher S100P expression demonstrated a negative correlation with methylation levels (cg14323984, cg27027375, cg14900031, cg14140379, cg25083732, cg07210669, cg26233331, and cg22266967), which were associated with CD8 + T cells. In vitro RT-PCR validated upregulated S100P expression across all five pancreatic cancer cell lines, and IHC confirmed high S100P levels in pancreatic cancer tissues (P < 0.05). CONCLUSION These findings suggest that S100P could serve as a promising biomarker for immunosuppressive microenvironment, which may provide a novel therapeutic way for pancreatic cancer.
Collapse
Affiliation(s)
- Weiwei Hao
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanyan Zhang
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingwen Dou
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pu Cui
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jicun Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|