1
|
Wu L, Wei D, Li S, Wu S, Lin Y, Chen L. The potential of MRI radiomics based on extrapulmonary metastases in predicting EGFR mutations: a systematic review and meta-analysis. Biomed Eng Online 2025; 24:4. [PMID: 39825348 PMCID: PMC11742221 DOI: 10.1186/s12938-025-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) gene mutations can lead to distant metastasis in non-small cell lung cancer (NSCLC). When the primary NSCLC lesions are removed or cannot be sampled, the EGFR status of the metastatic lesions are the potential alternative method to reflect EGFR mutations in the primary NSCLC lesions. This review aimed to evaluate the potential of magnetic resonance imaging (MRI) radiomics based on extrapulmonary metastases in predicting EGFR mutations through a systematic reviews and meta-analysis. MATERIALS AND METHODS A systematic review of the studies on MRI radiomics based on extrapulmonary metastases in predicting EGFR mutations. The area under the curve (AUC), sensitivity (SNEC), and specificity (SPEC) of each study were separately extracted for comprehensive evaluation of MRI radiomics in predicting EGFR mutations in primary or metastatic NSCLC. RESULTS Thirteen studies were ultimately included, with 2369 cases of metastatic NSCLC, including five studies predicting EGFR mutations in primary NSCLC, eight studies predicting EGFR mutations in metastatic NSCL. In terms of EGFR mutations in the primary lesion of NSCLC, the pooled AUC was 0.90, with SENC and SPEC of 0.80 and 0.85, respectively, which seems superior to the radiomics meta-analysis based on NSCLC primary lesions. In terms of EGFR mutations in NSCLC metastases, the pooled AUC was 0.86, with SENC and SEPC of 0.79 and 0.79, respectively, indicating moderate evaluation performance. CONCLUSIONS MRI radiomics helps to predict the EGFR mutation status in the primary or metastatic lesions of NSCLC, serve as a high-precision supplement to current molecular detection methods.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China.
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China
| | - Yan Lin
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China
| | - Lifei Chen
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong, 525011, People's Republic of China
| |
Collapse
|
2
|
Zhao W, Qin S, Wang Q, Chen Y, Liu K, Xin P, Lang N. Assessment of Hidden Blood Loss in Spinal Metastasis Surgery: A Comprehensive Approach with MRI-Based Radiomics Models. J Magn Reson Imaging 2024; 59:2023-2032. [PMID: 37578031 DOI: 10.1002/jmri.28954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Patients undergoing surgery for spinal metastasis are predisposed to hidden blood loss (HBL), which is associated with poor surgical outcomes but unpredictable. PURPOSE To evaluate the role of MRI-based radiomics models for assess the risk of HBL in patients undergoing spinal metastasis surgery. STUDY TYPE Retrospective. SUBJECTS 202 patients (42.6% female) operated on for spinal metastasis with a mean age of 58 ± 11 years were divided into a training (n = 162) and a validation cohort (n = 40). FIELD STRENGTH/SEQUENCE 1.5T or 3.0T scanners. Sagittal T1-weighted and fat-suppressed T2-weighted imaging sequences. ASSESSMENT HBL was calculated using the Gross formula. Patients were classified as low and high HBL group, with 1000 mL as the threshold. Radiomics models were constructed with radiomics features. The radiomics score (Radscore) was obtained from the optimal radiomics model. Clinical variables were accessed using univariate and multivariate logistic regression analyses. Independent risk variables were used to build a clinical model. Clinical variables combined with Radscore were used to establish a combined model. STATISTICAL TESTS Predictive performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score. Calibration curves and decision curves analyses were produced to evaluate the accuracy and clinical utility. RESULTS Among the radiomics models, the fusion (T1WI + FS-T2WI) model demonstrated the highest predictive efficacy (AUC: 0.744, 95% confidence interval [CI]: 0.576-0.914). The Radscore model (AUC: 0.809, 95% CI: 0.664-0.954) performs slightly better than the clinical model (AUC: 0.721, 95% CI: 0.524-0.918; P = 0.418) and the combined model (AUC: 0.752, 95% CI: 0.593-0.911; P = 0.178). DATA CONCLUSION A radiomics model may serve as a promising assessment tool for the risk of HBL in patients undergoing spinal metastasis surgery, and guide perioperative planning to improve surgical outcomes. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Weili Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Siyuan Qin
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Qizheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ke Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Peijin Xin
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Hou S, Wang H, Wang X, Chen H, Zhou B, Meng R, Sha X, Chang S, Wang H, Jiang W. Tumor-liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof-of-concept study. Med Phys 2024; 51:1083-1091. [PMID: 37408393 DOI: 10.1002/mp.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non-small-cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision-making. PURPOSE To explore the value of tumor-liver interface (TLI)-based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. METHODS This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast-enhanced T1-weighted (CET1) and T2-weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS-TLI) and the whole tumor (RS-W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. RESULTS A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS-TLI showed better prediction performance than RS-W in the training (AUCs, RS-TLI vs. RS-W, 0.842 vs. 0.797), internal validation (AUCs, RS-TLI vs. RS-W, 0.771 vs. 0.676) and external validation (AUCs, RS-TLI vs. RS-W, 0.733 vs. 0.679) cohort. CONCLUSION Our study demonstrated that TLI-based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi-parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.
Collapse
Affiliation(s)
- Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital, Shenyang, Liaoning, P.R. China
| | - Boyu Zhou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Ruiqing Meng
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| |
Collapse
|
4
|
Caloro E, Gnocchi G, Quarrella C, Ce M, Carrafiello G, Cellina M. Artificial Intelligence in Bone Metastasis Imaging: Recent Progresses from Diagnosis to Treatment - A Narrative Review. Crit Rev Oncog 2024; 29:77-90. [PMID: 38505883 DOI: 10.1615/critrevoncog.2023050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The introduction of artificial intelligence (AI) represents an actual revolution in the radiological field, including bone lesion imaging. Bone lesions are often detected both in healthy and oncological patients and the differential diagnosis can be challenging but decisive, because it affects the diagnostic and therapeutic process, especially in case of metastases. Several studies have already demonstrated how the integration of AI-based tools in the current clinical workflow could bring benefits to patients and to healthcare workers. AI technologies could help radiologists in early bone metastases detection, increasing the diagnostic accuracy and reducing the overdiagnosis and the number of unnecessary deeper investigations. In addition, radiomics and radiogenomics approaches could go beyond the qualitative features, visible to the human eyes, extrapolating cancer genomic and behavior information from imaging, in order to plan a targeted and personalized treatment. In this article, we want to provide a comprehensive summary of the most promising AI applications in bone metastasis imaging and their role from diagnosis to treatment and prognosis, including the analysis of future challenges and new perspectives.
Collapse
Affiliation(s)
- Elena Caloro
- Università degli studi di Milano, via Festa del Perdono, 7, 20122 Milan, Italy
| | - Giulia Gnocchi
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Cettina Quarrella
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Ce
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
5
|
Cheng Y, Wang H, Yuan W, Wang H, Zhu Y, Chen H, Jiang W. Combined radiomics of primary tumour and bone metastasis improve the prediction of EGFR mutation status and response to EGFR-TKI therapy for NSCLC. Phys Med 2023; 116:103177. [PMID: 38000098 DOI: 10.1016/j.ejmp.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To develop radiomics models of primary tumour and spinal metastases to predict epidermal growth factor receptor (EGFR) mutations and therapeutic response to EGFR-tyrosine kinase inhibitor (TKI) in patients with metastatic non-small-cell lung cancer (NSCLC). METHODS We enrolled 203 patients with spinal metastases between December 2017 and September 2021, classified as patients with the EGFR mutation or EGFR wild-type. All patients underwent thoracic CT and spinal MRI scans before any treatment. Radiomics analysis was performed to extract features from primary tumour and metastases images and identify predictive features with the least absolute shrinkage and selection operator. Radiomics signatures (RS) were constructed based on primary tumour (RS-Pri), metastases (RS-Met), and in combination (RS-Com) to predict EGFR mutation status and response to EGFR-TKI. Receiver operating characteristic (ROC) curve analysis with 10-fold cross-validation was applied to assess the performance of the models. RESULTS To predict the EGFR mutation status, the RS based on the combination of primary tumour and metastases improved the prediction AUCs compared to those based on the primary tumour or metastasis alone in the training (RS-Com-EGFR: 0.927) and validation (RS-Com-EGFR: 0.812) cohorts. To predict response to EGFR-TKI, the developed RS based on combined primary tumour and metastasis generated the highest AUCs in the training (RS-Com-TKI: 0.880) and validation (RS-Com-TKI: 0.798) cohort. CONCLUSIONS Primary NSCLC and spinal metastases can provide complementary information to predict the EGFR mutation status and response to EGFR-TKI. The developed models that integrate primary lesions and metastases may be potential imaging markers to guide individual treatment decisions.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Wendi Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Haotian Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yuheng Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 110004 Shenyang, PR China.
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China.
| |
Collapse
|