1
|
Lin J, Qu S, Yang K, Zhang T, Bai Y, Wu J, Huang Y, Fang M, Liu X, Huang X, Chen N, Li Z, Li W, Zhang S, Zhang S, Hu G, Sun Y, Chen X, Liu Y, Jing S, Shen L, Chang Z, Xie L, Gai W, Zhou Q, Chen X, Yi J, Guo Y. Phase Ib study of SCT200 combined with paclitaxel or docetaxel in patients with recurrent or metastatic head and neck squamous cell carcinoma following platinum-based chemotherapy and PD-1 antibody. Cancer Lett 2025; 613:217513. [PMID: 39892704 DOI: 10.1016/j.canlet.2025.217513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Treatment options for recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) are limited, especially for patients who progress after immune checkpoint inhibitor (ICI) therapy. This phase Ib study investigates the efficacy and safety of SCT200, an epidermal growth factor receptor (EGFR) antibody, combined with paclitaxel or docetaxel in R/M HNSCC patients who have failed both platinum-based chemotherapy and programmed cell death protein 1 (PD-1) inhibitors. This was a multicenter, open-label study enrolling patients with resistance or intolerance to platinum-based chemotherapy and PD-1 inhibitors. Patients received intravenous SCT200 (6 mg/kg weekly for 12 weeks, followed by 8 mg/kg every two weeks). Paclitaxel (80 mg/m2 weekly) or docetaxel (75 mg/m2 every three weeks) was administered according to the patient's prior paclitaxel treatment history. The primary endpoint was objective response rate (ORR). Thirty patients were included in the efficacy and safety analyses. The ORR was 26.7 % (95 % confidence interval [CI]: 12.3-45.9). The median progression-free survival (PFS) was 4.1 months (95 % CI: 2.7-5.7), and the median overall survival (OS) was 8.7 months (95 % CI: 5.0-11.9). For patients receiving SCT200 with docetaxel, median PFS was 5.7 months, and OS was 9.5 months. Common adverse events (AEs) included hypomagnesemia, acneiform dermatitis, and rash. No unexpected safety signals were observed. SCT200 in combination with paclitaxel or docetaxel shows promising efficacy in patients with R/M HNSCC following platinum-based chemotherapy and PD-1 inhibitors, warranting further investigation. ClinicalTrials.gov identifier: NCT05552807.
Collapse
Affiliation(s)
- Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Song Qu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kunyu Yang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuansong Bai
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Jian Wu
- Chongqing University Cancer Hospital, Chongqing, China
| | | | - Meiyu Fang
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Xianling Liu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoming Huang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nianyong Chen
- West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Li
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Weidong Li
- Afflllated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | | | - Shurong Zhang
- Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Guangyuan Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Peking University Cancer Hospital, Beijing, China
| | - Xiaohong Chen
- Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | | | - Shanghua Jing
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liangfang Shen
- Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Chang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenlin Gai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Qiang Zhou
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xinyue Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Jiang Yi
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Ye Guo
- Shanghai East Hospital, School of Medicine, Tongji University, #1800 Yun Tai Road, Shanghai, 200123, China.
| |
Collapse
|
2
|
Yang L, Zhang W, Fan N, Cao P, Cheng Y, Zhu L, Luo S, Zong H, Bai Y, Zhou J, Deng Y, Ba Y, Liu T, Aili M, Yin X, Gu K, Dai G, Ying J, Shi J, Gao Y, Li W, Yu G, Xie L, Gai W, Wang Y, Meng P, Shi Y. Efficacy, safety and genomic analysis of SCT200, an anti-EGFR monoclonal antibody, in patients with fluorouracil, irinotecan and oxaliplatin refractory RAS and BRAF wild-type metastatic colorectal cancer: a phase Ⅱ study. EBioMedicine 2024; 100:104966. [PMID: 38217945 PMCID: PMC10826138 DOI: 10.1016/j.ebiom.2024.104966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Limited therapeutic options are available for metastatic colorectal cancer (mCRC) patients after failure of first- and second-line therapies, representing an unmet medical need for novel therapies. METHODS This is an open-label, single arm, multicenter, phase Ⅱ study aiming to perform the efficacy, safety and genomic analysis of SCT200, a noval fully humanized IgG1 anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in patients with fluorouracil, irinotecan and oxaliplatin refractory RAS and BRAF wild-type mCRC. SCT200 (6 mg/kg) was given weekly for the first six weeks, followed by a higher dose of 8 mg/kg every two weeks until disease progression or unacceptable toxicity. Primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR) and secondary endpoints included ORR in patients with left-sided tumor, disease control rate (DCR), duration of response (DoR), time to response (TTR), progression-free survival (PFS), overall survival (OS) and safety. FINDINGS From February 12, 2018 to December 1, 2019, a total of 110 patients aged between 26 and 77 years (median: 55; interquartile range [IQR]: 47-63) with fluorouracil, oxaliplatin, and irinotecan refractory RAS and BRAF wild-type mCRC were enrolled from 22 hospitals in China. As the data cut-off date on May 15, 2020, the IRC-assessed ORR and DCR was 31% (34/110, 95% confidence interval [CI] 22-40%) and 75% (82/110, 95% CI 65-82%), respectively. Thirty one percent (34/110) patients achieved confirmed partial response (PR). The median PFS and median OS were 5.1 months (95% CI 3.4-5.2) and 16.2 months (95% CI 11.1-not available [NA]), respectively. The most common ≥ grade 3 treatment-related adverse events (TRAEs) were hypomagnesemia (17%, 19/110) and acneiform dermatitis (11%, 12/110). No deaths occurred. Genomic analysis suggested positive association between MYC amplification and patients' response (P = 0.0058). RAS/RAF mutation and MET amplification were the most frequently detected resistance mechanisms. Patients with high circulating tumor DNA (ctDNA) at baseline or without ctDNA clearance at the 7th week after the first dose of SCT200 administration before receiving SCT200 had worse PFS and OS. INTERPRETATION SCT200 exhibited promising clinical efficacy and manageable safety profiles in RAS and BRAF wild-type mCRC patients progressed on fluorouracil, irinotecan and oxaliplatin treatment. The baseline ctDNA and ctDNA clearance status at the 7th week after the first dose of SCT200 administration before receiving SCT200 could be a potential prognostic biomarker for RAS and BRAF wild-type mCRC patients with SCT200 therapy. FUNDING This study was sponsored by Sinocelltech Ltd., Beijing, China and partly supported by the National Science and Technology Major Project for Key New Drug Development (2019ZX09732001-006, 2017ZX09304015).
Collapse
Affiliation(s)
- Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Nanfeng Fan
- Department of Abdominal Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Peiguo Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Cheng
- Department of Oncology, Cancer Hospital of Jilin Province, Changchun, China
| | - Lingjun Zhu
- Department of Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Suxia Luo
- Department of Medical Oncology, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxian Bai
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Ba
- Department of Gastroenterology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Mayinuer Aili
- The Third Department of Oncology, Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xianli Yin
- Department of Gastroenterology, Hunan Cancer Hospital, Changsha, China
| | - Kangsheng Gu
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jieer Ying
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jianhua Shi
- Department of Medical Oncology, Linyi Cancer Hospital, Linyi, China
| | - Yajie Gao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guohua Yu
- Department of Oncology, Weifang People's Hospital, Weifang, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenlin Gai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yan Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Peng Meng
- Burning Rock Biotech, Shanghai, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
3
|
Bai M, Lu Y, Shi C, Yang J, Li W, Yin X, Huang C, Shen L, Xie L, Ba Y. Phase Ib study of anti-EGFR antibody (SCT200) in combination with anti-PD-1 antibody (SCT-I10A) for patients with RAS/BRAF wild-type metastatic colorectal cancer. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0301. [PMID: 38148327 PMCID: PMC11271220 DOI: 10.20892/j.issn.2095-3941.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE This study evaluated the safety and efficacy of an anti-epidermal growth factor receptor (EGFR) antibody (SCT200) and an anti-programmed cell death 1 (PD-1) antibody (SCT-I10A) as third-line or subsequent therapies in patients with rat sarcoma viral oncogene (RAS)/v-raf murine sarcoma viral oncogene homolog B (BRAF) wild-type (wt) metastatic colorectal cancer (mCRC). METHODS We conducted a multicenter, open-label, phase Ib clinical trial. Patients with histologically confirmed RAS/BRAF wt mCRC with more than two lines of treatment were enrolled and treated with SCT-I10A and SCT200. The primary endpoints were the objective response rate (ORR) and safety. The secondary endpoints included disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS Twenty-one patients were enrolled in the study through January 28, 2023. The ORR was 28.57% and the DCR was 85.71% (18/21). The median PFS and OS were 4.14 and 12.84 months, respectively. The treatment-related adverse events (TRAEs) were tolerable. Moreover, compared with the monotherapy cohort from our previous phase I study evaluating SCT200 for RAS/BRAF wt mCRC in a third-line setting, no significant improvements in PFS and OS were observed in the combination group. CONCLUSIONS SCT200 combined with SCT-I10A demonstrated promising efficacy in previously treated RAS/BRAF wt mCRC patients with an acceptable safety profile. Further head-to-head studies with larger sample sizes are needed to validate whether the efficacy and safety of combined anti-EGFR and anti-PD-1 therapy are superior to anti-EGFR monotherapy in the third-line setting. (Registration No. NCT04229537).
Collapse
Affiliation(s)
- Ming Bai
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yao Lu
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Chunmei Shi
- Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianwei Yang
- Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianli Yin
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Yi Ba
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
- Department of Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100010, China
| |
Collapse
|
4
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|