1
|
Mai Y, Ji Z, Tan Y, Feng L, Qin J. BIRC5 knockdown ameliorates hepatocellular carcinoma progression via regulating PPARγ pathway and cuproptosis. Discov Oncol 2024; 15:706. [PMID: 39585552 PMCID: PMC11589110 DOI: 10.1007/s12672-024-01592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) with complex molecular carcinogenesis represents a kind of prevalent neoplasm occurring in the liver. The objective of this study is to illustrate the function of baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) and underlying action mechanisms in HCC progression. METHODS Comprehensive bioinformatics methods were conducted to screen differentially expressed genes (DEGs), cuproptosis-associated DEGs, and hub genes. The correlation between BIRC5 and immune cell infiltration, prognosis value was evaluated. The specific effects of BIRC5 silencing on HCC cells was validated by functional assays, and the impact on tumorigenicity and cuproptosis was also elucidated in vivo. Additionally, the effects of BIRC5 deficiency on PPAR pathway were determined using Oroxin A in vitro. RESULTS A total of 45 cuproptosis-associated DEGs and 9 hub genes were discovered through bioinformatics. Then 6 core genes were confirmed in Hep-3B and SK-Hep-1 cells with 4 genes upregulated and 2 genes downregulated. Therein, BIRC5 was positively correlated with the infiltration of CD8+ T cells, macrophages, and highly expressed BIRC5 exhibited poor prognosis of overall survival in HCC. Furthermore, BIRC5 deletion inhibited the PPARγ pathway, thereby restraining the malignant phenotypes of HCC cells and tumorigenesis in vivo. Additionally, silencing of BIRC5 contributed to the initiation of cuproptosis in HCC. CONCLUSIONS BIRC5 silencing attenuated HCC through blocking PPARγ pathway and regulating cuproptosis, which may offer therapeutic implications against HCC.
Collapse
Affiliation(s)
- Yanxing Mai
- Department of Geriatrics, Guangdong, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Guangzhou, 510282, China
| | - Zhuocheng Ji
- Second Department of Hepatobiliary Surgery, Guangdong, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yujing Tan
- Department of Radiotherapy, Guangdong, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Guangzhou, 510282, China
| | - Lei Feng
- Department of Hepatobiliary Surgery, Guizhou, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, China
| | - Jiasheng Qin
- Second Department of Hepatobiliary Surgery, Guangdong, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Haizhu District, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Guo K, Qu Z, Yu Y, Zou C. Identification of an 11-miRNA-regulated and surface-protein genes signature predicts the prognosis of lung adenocarcinoma based on multi-omics study. Am J Transl Res 2024; 16:1568-1586. [PMID: 38883394 PMCID: PMC11170602 DOI: 10.62347/cwmt4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and lethal cancers worldwide, signifying a critical need for improved prognostic tools. A growing number of studies have highlighted the role of microRNAs (miRNAs) and their regulatory functions in tumorigenesis and cancer progression. In this context, we performed an extensive analysis of bulk RNA- and miRNA-sequencing to identify LUAD-associated prognostic genes. A risk score system based on 11 miRNA-regulated and surface-protein genes was developed, which was later validated by internally and externally using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Further single-cell RNA sequencing analysis revealed significant interactions between various cellular subpopulations within the tumor microenvironment, with the most pronounced differences observed between endothelial and epithelial cells. The mutational analysis highlighted TP53 as a key signaling pathway associated with the risk score. The study underscores that immune suppression, indicated by a positive association with regulatory T cells (Tregs) and an inverse correlation with M1-type macrophages, is prevalent in high-risk LUAD patients. These findings provide a promising prognostic tool for clinical outcomes of LUAD patients, facilitating future development of therapeutic strategies and enhancing our understanding of the regulatory function of miRNAs in LUAD.
Collapse
Affiliation(s)
- Kunyu Guo
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Zhenbo Qu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Yibo Yu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University Harbin 150000, Heilongjiang, China
| |
Collapse
|
3
|
Buthasane W, Shotelersuk V, Chetruengchai W, Srichomthong C, Assawapitaksakul A, Tangphatsornruang S, Pootakham W, Sonthirod C, Tongsima S, Wangkumhang P, Wilantho A, Thongphakdee A, Sanannu S, Poksawat C, Nipanunt T, Kasorndorkbua C, Koepfli KP, Pukazhenthi BS, Suriyaphol P, Wongsurawat T, Jenjaroenpun P, Suriyaphol G. Comprehensive genome assembly reveals genetic diversity and carcass consumption insights in critically endangered Asian king vultures. Sci Rep 2024; 14:9455. [PMID: 38658744 PMCID: PMC11043450 DOI: 10.1038/s41598-024-59990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.
Collapse
Affiliation(s)
- Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ampika Thongphakdee
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Saowaphang Sanannu
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Chaianan Poksawat
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Tarasak Nipanunt
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Chaiyan Kasorndorkbua
- Laboratory of Raptor Research and Conservation Medicine, Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Yue J, Guo H, Ma J, Shi W, Wu Y. Novel prognostic signature for lung adenocarcinoma based on immune-related mRNA pairs. Heliyon 2024; 10:e24397. [PMID: 38317924 PMCID: PMC10839877 DOI: 10.1016/j.heliyon.2024.e24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly lethal malignant tumor. While the involvement of multiple mRNAs in the progression of LUAD is well established, the potential diagnostic value of immune-related mRNAs (irmRNAs) in LUAD remains largely unexplored. In this study, we utilized RNA-seq, clinical data, and immune-related gene information from LUAD patients to identify differentially expressed immune-related mRNAs (DEirmRNAs) and developed a predictive risk model based on specific DEirmRNA pairs closely linked with patient prognosis. We classified patients into high-risk and low-risk groups and analyzed factors such as survival rate, clinical characteristics, gene enrichment, immune cell infiltration, tumor mutation load, and drug susceptibility. We confirmed the expression levels of these DEirmRNAs in tumor tissues using qRT-PCR assay. Our results showed that the low-risk group had a longer survival time and lower tumor mutation burden (TMB) and microsatellite instability (MSI) compared to the high-risk group. The high-risk group also had a significant reduction in the number of certain immune cells and a lower half-maximum inhibitor concentration (IC50). We identified specific DEirmRNA pairs that were up-regulated or down-regulated in tumor tissues compared to adjacent tissues. Our prognostic risk model based on DEirmRNA pairs could be used to predict the prognosis of LUAD patients and provide reference for better treatment.
Collapse
Affiliation(s)
- Jiawei Yue
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Hui Guo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jinhong Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Yumin Wu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Nano and Soft Materials (FUNSOM) College of Nano Science &Technology (CNST) Suzhou, Jiangsu, 215123, China
| |
Collapse
|