1
|
Dong L, Wu HT, Zhang RH, Niu LH, Wang YX, Wei WB, Panda-Jonas S, Jonas JB. Intraocular amphiregulin and axial elongation in non-human adolescent primates. Exp Eye Res 2024; 247:110059. [PMID: 39181228 DOI: 10.1016/j.exer.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The purpose of the experimental interventional study was to examine the influence of intraocularly applied amphiregulin, a member of the epidermal growth factor (EGF) family, on axial length in young non-human primates. It included three non-human primates (Macaca mulatta), aged 4-6 years. The left eyes received three intravitreal injections of amphiregulin (400ng/50 μl) in intervals of 4 weeks, while the right eyes received three intravitreal injections of phosphate buffered solution (50 μl) at the same time points. Ocular biometry was performed in weekly intervals. At baseline, the left eyes (study eyes) were shorter than the right (control) eyes (20.69 ± 0.21 mm versus 20.79 ± 0.24 mm; P < 0.001), with an inter-eye axial length (AL) difference (left minus right eye) of -0.10 ± 0.23 mm. Inter-eye AL difference increased (P < 0.001) to 0.15 ± 0.18 mm at study end, at 12 weeks after baseline. Axial elongation during the study was higher (P < 0.001) in the left eyes (20.69 ± 0.21 mm to 21.05 ± 0.29 mm or 0.36 ± 0.30 mm) than in the right eyes (20.79 ± 0.24 mm to 20.90 ± 0.31 mm or 0.11 ± 0.17 mm). In a parallel manner, inter-eye difference in vitreous cavity depth combined with lens thickness (left eye minus right eye) increased from -0.04 ± 0.17 mm at baseline to -0.02 ± 0.21 mm (P = 0.02), 0.04 ± 0.10 mm (P = 0.002), and to 0.42 ± 0.67 mm (P < 0.001) at 5, 6, and 12 weeks after baseline, respectively. The results suggest that intravitreally applied amphiregulin as EGF family member led to an increase in axial length in adolescent non-human primates. It supports the hypothesis of amphiregulin as EGF family member being involved in the process of axial elongation.
Collapse
Affiliation(s)
- Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ling Han Niu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Songhomitra Panda-Jonas
- University Eye Hospital, University of Heidelberg, Heidelberg, Germany; Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
| | - Jost B Jonas
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany; Rothschild Foundation Hospital, Institut Français de Myopie, 44 Avenue Mathurin Moreau, 75019, Paris, France; Singapore Eye Research Institute, Singapore National Eye Center, Singapore.
| |
Collapse
|
2
|
Bikbov MM, Kazakbaeva GM, Holz FG, Panda-Jonas S, Gilemzianova LI, Khakimov DA, Jonas JB. Intravitreal panitumumab and myopic macular degeneration. Br J Ophthalmol 2024; 108:859-864. [PMID: 37429701 DOI: 10.1136/bjo-2023-323383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND In experimental studies, intravitreally applied antibodies against epidermal growth factor (EGF), EGF family members (amphiregulin, neuregulin-1, betacellulin, epigen, epiregulin) and against the EGF receptor (EGFR) were associated with a reduction in lens-induced axial elongation and decrease in physiological eye elongation in guinea pigs and in non-human primates. Here, we investigated the intraocular tolerability and safety of a fully human monoclonal IgG2-antibody against EGFR, already in clinical use in oncology, as a potential future therapeutic approach for axial elongation in adult eyes with pathological myopia. METHODS The clinical, monocentre, open-label, multiple-dose, phase-1 study included patients with myopic macular degeneration of stage 4, who received intravitreal injections of panitumumab in various doses and in intervals ranging between 2.1 months and 6.3 months. RESULTS The study included 11 patients (age:66.8±6.3 years), receiving panitumumab injections in doses of 0.6 mg (4 eyes; 1×1 injection, 3×2 injections), 1.2 mg (4 eyes; 1×1 injection, 2×2 injections, 1×3 injections) and 1.8 mg (3 eyes; 1×1 injection, 2×2 injections), respectively. None of the participants showed treatment-emergent systemic adverse events or intraocular inflammatory reactions. Best-corrected visual acuity (1.62±0.47 logarithm of the minimal angle of resolution (logMAR) vs 1.28±0.59 logMAR; p=0.08) and intraocular pressure (13.8±2.4 mm Hg vs 14.3±2.6 mm Hg; p=0.20) remained unchanged. In nine patients with a follow-up of >3 months (mean:6.7±2.7 months), axial length did not change significantly (30.73±1.03 mm vs 30.77±1.19 mm; p=0.56). CONCLUSIONS In this open-labelled, phase-1 study with a mean follow-up of 6.7 months, panitumumab repeatedly administered intravitreally up to a dose of 1.8 mg was not associated with intraocular or systemic adverse effects. During the study period, axial length remained unchanged. TRIAL REGISTRATION NUMBER DRKS00027302.
Collapse
Affiliation(s)
| | | | - Frank G Holz
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany
| | - Songhomitra Panda-Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | | | | | - Jost B Jonas
- Department of Ophthalmology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Wu HT, Shi XH, Dong L, Zhang RH, Li YT, Wei WB. Lens-induced myopization and body weight in young guinea pigs. BMC Ophthalmol 2024; 24:6. [PMID: 38172796 PMCID: PMC10763096 DOI: 10.1186/s12886-023-03271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To investigate the relationship between body weight and Axial length in guinea pigs. METHODS Forty pigmented guinea pigs were randomly divided into two groups, namely control group and negative lens-induced myopization (LIM) group. After measuring the baseline axial length and body weight (BW), guinea pigs of LIM group received bilateral negative lens-induced myopization using - 10.0 diopters lenses. One week later, the lenses were removed and biometric and ophthalmoscopic examinations were repeated. RESULTS Two groups of guinea pigs showed no statistical difference in initial body weight and eye axis length. Compared to the control group, the lens-induced group had a lower weight (P = 0.02) and a longer axial length (P < 0.01) at the end of study Neither at baseline nor at week 1 did AL correlate with BW in both groups (Control Baseline: r = 0.306, P = 0.19; Control Week1: r = 0.333, P = 0.15; LIM Baseline: r=-0.142, P = 0.55; LIM Week 1: r = 0.189, P = 0.42). Lens-induction had a significant effect on axial elongation (P < 0.01) while body weight had no impact on such aspect (P > 0.05). CONCLUSION In guinea pigs of the same age, axial length was not correlated with body weight. Also, baseline body weight had no impact on natural axial length growth or lens-induced myopia. Lens-induction caused a significant reduction in body weight gain.
Collapse
Affiliation(s)
- Hao-Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Xu-Han Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Rui-Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Yi-Tong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, 100730, China.
| |
Collapse
|
4
|
Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S. Myopia: Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retin Eye Res 2023; 96:101156. [PMID: 36585290 DOI: 10.1016/j.preteyeres.2022.101156] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Myopic axial elongation is associated with various non-pathological changes. These include a decrease in photoreceptor cell and retinal pigment epithelium (RPE) cell density and retinal layer thickness, mainly in the retro-equatorial to equatorial regions; choroidal and scleral thinning pronounced at the posterior pole and least marked at the ora serrata; and a shift in Bruch's membrane opening (BMO) occurring in moderately myopic eyes and typically in the temporal/inferior direction. The BMO shift leads to an overhang of Bruch's membrane (BM) into the nasal intrapapillary compartment and BM absence in the temporal region (i.e., parapapillary gamma zone), optic disc ovalization due to shortening of the ophthalmoscopically visible horizontal disc diameter, fovea-optic disc distance elongation, reduction in angle kappa, and straightening/stretching of the papillomacular retinal blood vessels and retinal nerve fibers. Highly myopic eyes additionally show an enlargement of all layers of the optic nerve canal, elongation and thinning of the lamina cribrosa, peripapillary scleral flange (i.e., parapapillary delta zone) and peripapillary choroidal border tissue, and development of circular parapapillary beta, gamma, and delta zone. Pathological features of high myopia include development of macular linear RPE defects (lacquer cracks), which widen to round RPE defects (patchy atrophies) with central BM defects, macular neovascularization, myopic macular retinoschisis, and glaucomatous/glaucoma-like and non-glaucomatous optic neuropathy. BM thickness is unrelated to axial length. Including the change in eye shape from a sphere in emmetropia to a prolate (rotational) ellipsoid in myopia, the features may be explained by a primary BM enlargement in the retro-equatorial/equatorial region leading to axial elongation.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karis-University, Mannheim, Germany; Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany.
| | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | | |
Collapse
|
5
|
Dong L, Zhang RH, Wu HT, Li HY, Zhou WD, Shi XH, Yu CY, Li YT, Li YF, Jonas JB, Wei WB. Intravitreal Short-Hairpin RNA Attenuated Adeno-Associated Virus-Induced Knockdown of Amphiregulin and Axial Elongation in Experimental Myopia. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37040096 PMCID: PMC10103729 DOI: 10.1167/iovs.64.4.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Background Epidermal growth factor (EGF) and its family members have been reported to be involved in myopic axial elongation. We examined whether short hairpin RNA attenuated adeno-associated virus (shRNA-AAV)-induced knockdown of amphiregulin, an EGF family member, has an influence on axial elongation. Methods Three-week-old pigmented guinea pigs underwent lens-induced myopization (LIM) without additional intervention (LIM group; n = 10 animals) or additionally received into their right eyes at baseline an intravitreal injection of scramble shRNA-AAV (5 × 1010 vector genome [vg]) (LIM + Scr-shRNA group; n = 10) or of amphiregulin (AR)-shRNA-AAV (5 × 1010 vg/5 µL) (LIM + AR-shRNA-AAV group; n = 10), or they received an injection of AR-shRNA-AAV at baseline and three weekly amphiregulin injections (20 ng/5 µL) (LIM + AR-shRNA-AAV + AR group; n = 10). The left eyes received equivalent intravitreal injections of phosphate-buffered saline. Four weeks after baseline, the animals were sacrificed. Results At study end, interocular axial length difference was higher (P < 0.001), choroid and retina were thicker (P < 0.05), and relative expression of amphiregulin and p-PI3K, p-p70S6K, and p-ERK1/2 was lower (P < 0.05) in the LIM + AR-shRNA-AAV group than in any other group. The other groups did not differ significantly when compared with each other. In the LIM + AR-shRNA-AAV group, the interocular axial length difference increased with longer study duration. TUNEL assay did not reveal significant differences among all groups in retinal apoptotic cell density. In vitro retinal pigment epithelium cell proliferation and migration were the lowest (P < 0.05) in the LIM + AR-shRNA-AAV group, followed by the LIM + AR-shRNA-AAV + AR group. Conclusions shRNA-AAV-induced knockdown of amphiregulin expression, in association with suppression of epidermal growth factor receptor signaling, attenuated axial elongation in guinea pigs with LIM. The finding supports the notion of EGF playing a role in axial elongation.
Collapse
Affiliation(s)
- Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui-Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao-Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - He-Yan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen-Da Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xu-Han Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chu-Yao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Tong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Fan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Switzerland
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|