1
|
Shitara Y, Konno R, Yoshihara M, Kashima K, Ito A, Mukai T, Kimoto G, Kakiuchi S, Ishikawa M, Kakihara T, Nagamatsu T, Takahashi N, Fujishiro J, Kawakami E, Ohara O, Kawashima Y, Watanabe E. Host-derived protein profiles of human neonatal meconium across gestational ages. Nat Commun 2024; 15:5543. [PMID: 39019879 PMCID: PMC11255260 DOI: 10.1038/s41467-024-49805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
Meconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted an extensive proteomic analysis of first meconium from 259 newborns across varied gestational ages to delineate protein composition and elucidate its relevance to neonatal diseases. The first meconium samples were collected, with the majority obtained before feeding, and the mean time for the first meconium passage from the anus was 11.9 ± 9.47 h. Our analysis revealed 5370 host-derived meconium proteins, which varied depending on sex and gestational age. Specifically, meconium from preterm infants exhibited elevated concentrations of proteins associated with the extracellular matrix. Additionally, the protein profiles of meconium also exhibited unique variations depending on both specific diseases, including gastrointestinal diseases, congenital heart diseases, and maternal conditions. Furthermore, we developed a machine learning model to predict gestational ages using meconium proteins. Our model suggests that newborns with gastrointestinal diseases and congenital heart diseases may have immature gastrointestinal systems. These findings highlight the intricate relationship between clinical parameters and meconium protein composition, offering potential for a novel approach to assess neonatal gastrointestinal health.
Collapse
Affiliation(s)
- Yoshihiko Shitara
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masahito Yoshihara
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - Kohei Kashima
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Ito
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Mukai
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Goh Kimoto
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satsuki Kakiuchi
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Tomo Kakihara
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Naoto Takahashi
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiryo Kawakami
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Kanagawa, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan.
| | - Eiichiro Watanabe
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Surgery, Gunma Children's Medical Center, Gunma, Japan.
| |
Collapse
|
2
|
Martins RDS, Hulscher JBF, Timmer A, Kooi EMW, Poelstra K. Necrotizing enterocolitis: a potential protective role for intestinal alkaline phosphatase as lipopolysaccharide detoxifying enzyme. Front Pediatr 2024; 12:1401090. [PMID: 38745834 PMCID: PMC11091495 DOI: 10.3389/fped.2024.1401090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a life-threatening inflammatory disease. Its onset might be triggered by Toll-Like Receptor 4 (TLR4) activation via bacterial lipopolysaccharide (LPS). We hypothesize that a deficiency of intestinal alkaline phosphatase (IAP), an enzyme secreted by enterocytes that dephosphorylates LPS, may contribute to NEC development. Methods In this prospective pilot study, we analyzed intestinal resection specimens from surgical NEC patients, and from patients undergoing Roux-Y reconstruction for hepatobiliary disease as controls. We assessed IAP activity via enzymatic stainings and assays and explored IAP and TLR4 co-localization through immunofluorescence. Results The study population consisted of five NEC patients (two Bell's stage IIb and three-stage IIIb, median (IQR) gestational age 25 (24-28) weeks, postmenstrual age at diagnosis 28 (26-31) weeks) and 11 controls (unknown age). There was significantly lower IAP staining in NEC resection specimens [49 (41-50) U/g of protein] compared to controls [115 (76-144), P = 0.03]. LPS-dephosphorylating activity was also lower in NEC patients [0.06 (0-0.1)] than in controls [0.3 (0.2-0.5), P = 0.003]. Furthermore, we observed colocalization of IAP and TLR4 in NEC resection specimens. Conclusion This study suggests a significantly lower IAP level in resection specimens of NEC patients compared to controls. This lower IAP activity suggests a potential role of IAP as a protective agent in the gut, which needs further confirmation in larger cohorts.
Collapse
Affiliation(s)
- Raquel Dos Santos Martins
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan B. F. Hulscher
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Albert Timmer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth M. W. Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Poelstra
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Martins RDS, Kooi EMW, Poelstra K, Hulscher JBF. The role of intestinal alkaline phosphatase in the development of necrotizing enterocolitis. Early Hum Dev 2023; 183:105797. [PMID: 37300991 DOI: 10.1016/j.earlhumdev.2023.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal disease that affects neonates worldwide and often leads to high morbidity and mortality rates. Despite extensive research, the cause of NEC remains unclear, and current treatment options are limited. An important novel finding is the potential role of intestinal Alkaline Phosphatase (IAP) in both pathogenesis and treatment of NEC. IAP can play a vital role in detoxifying liposaccharides (LPS), a key mediator of many pathological processes, thereby reducing the inflammatory response associated with NEC. Furthermore, IAP can help prevent dysbiosis, improve intestinal perfusion, and promote autophagy. In this comprehensive review, we present evidence of the possible connection between IAP and the LPS/Toll-like receptor 4 (TLR4) pathway, impaired gut immunity, and dysbiosis in the preterm gut. Based on these findings, the administration of exogenous IAP might provide promising preventive and therapeutic avenues for the management of NEC.
Collapse
Affiliation(s)
- Raquel Dos Santos Martins
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Poelstra
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Sampath V, Martinez M, Caplan M, Underwood MA, Cuna A. Necrotizing enterocolitis in premature infants-A defect in the brakes? Evidence from clinical and animal studies. Mucosal Immunol 2023; 16:208-220. [PMID: 36804483 DOI: 10.1016/j.mucimm.2023.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
A key aspect of postnatal intestinal adaptation is the establishment of symbiotic relationships with co-evolved gut microbiota. Necrotizing enterocolitis (NEC) is the most severe disease arising from failure in postnatal gut adaptation in premature infants. Although pathological activation of intestinal Toll-like receptors (TLRs) is believed to underpin NEC pathogenesis, the mechanisms are incompletely understood. We postulate that unregulated aberrant TLR activation in NEC arises from a failure in intestinal-specific mechanisms that tamponade TLR signaling (the brakes). In this review, we discussed the human and animal studies that elucidate the developmental mechanisms inhibiting TLR signaling in the postnatal intestine (establishing the brakes). We then evaluate evidence from preclinical models and human studies that point to a defect in the inhibition of TLR signaling underlying NEC. Finally, we provided a framework for the assessment of NEC risk by screening for signatures of TLR signaling and for NEC prevention by TLR-targeted therapy in premature infants.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.
| | - Maribel Martinez
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael Caplan
- Department of Pediatrics, North Shore University Health System, Evanston, Illinois, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
5
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Wells JM, Gao Y, de Groot N, Vonk MM, Ulfman L, van Neerven RJJ. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu Rev Nutr 2022; 42:165-200. [PMID: 35697048 DOI: 10.1146/annurev-nutr-122221-103916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal barrier is essential in early life to prevent infection, inflammation, and food allergies. It consists of microbiota, a mucus layer, an epithelial layer, and the immune system. Microbial metabolites, the mucus, antimicrobial peptides, and secretory immunoglobulin A (sIgA) protect the intestinal mucosa against infection. The complex interplay between these functionalities of the intestinal barrier is crucial in early life by supporting homeostasis, development of the intestinal immune system, and long-term gut health. Exclusive breastfeeding is highly recommended during the first 6 months. When breastfeeding is not possible, milk-based infant formulas are the only safe alternative. Breast milk contains many bioactive components that help to establish the intestinal microbiota and influence the development of the intestinal epithelium and the immune system. Importantly, breastfeeding lowers the risk for intestinal and respiratory tract infections. Here we review all aspects of intestinal barrier function and the nutritional components that impact its functionality in early life, such as micronutrients, bioactive milk proteins, milk lipids, and human milk oligosaccharides. These components are present in breast milk and can be added to milk-based infant formulas to support gut health and immunity. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jerry M Wells
- Host Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Yifan Gao
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.,FrieslandCampina, Amersfoort, The Netherlands;
| |
Collapse
|
7
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Protective Effect of Alkaline Phosphatase Supplementation on Infant Health. Foods 2022; 11:foods11091212. [PMID: 35563935 PMCID: PMC9101100 DOI: 10.3390/foods11091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alkaline phosphatase (ALP) is abundant in raw milk. Because of its high heat resistance, ALP negative is used as an indicator of successful sterilization. However, pasteurized milk loses its immune protection against allergy. Clinically, ALP is also used as an indicator of organ diseases. When the activity of ALP in blood increases, it is considered that diseases occur in viscera and organs. Oral administration or injecting ALP will not cause harm to the body and has a variety of probiotic effects. For infants with low immunity, ALP intake is a good prebiotic for protecting the infant’s intestine from potential pathogenic bacteria. In addition, ALP has a variety of probiotic effects for any age group, including prevention and treatment intestinal diseases, allergies, hepatitis, acute kidney injury (AKI), diabetes, and even the prevention of aging. The prebiotic effects of alkaline phosphatase on the health of infants and consumers and the content of ALP in different mammalian raw milk are summarized. The review calls on consumers and manufacturers to pay more attention to ALP, especially for infants with incomplete immune development. ALP supplementation is conducive to the healthy growth of infants.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Kontopodi E, Hettinga K, Stahl B, van Goudoever JB, M van Elburg R. Testing the effects of processing on donor human Milk: Analytical methods. Food Chem 2022; 373:131413. [PMID: 34700038 DOI: 10.1016/j.foodchem.2021.131413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023]
Abstract
Holder pasteurization is the current recommended method for donor human milk treatment. This method effectively eliminates most life-threatening contaminants in donor milk, but it also greatly reduces some of its biological properties. Consequently, there is a growing interest for developing novel processing methods that can ensure both microbial inactivation and a higher retention of the functional components of donor milk. Our aim was to offer a comprehensive overview of the analytical techniques available for the evaluation of such methods. To suggest an efficient workflow for the analysis of processed donor milk, a safety analytical panel as well as a nutritional value and functionality analytical panel are discussed, together with the principles, benefits, and drawbacks of the available techniques. Concluding on the suitability of a novel method requires a multifactorial approach which can be achieved by a combination of analytical targets and by using complementary assays to cross-validate the obtained results.
Collapse
Affiliation(s)
- Eva Kontopodi
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands; Food Quality and Design Group, Wageningen University & Research, the Netherlands.
| | - Kasper Hettinga
- Food Quality and Design Group, Wageningen University & Research, the Netherlands
| | - Bernd Stahl
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Abramov VM, Kosarev IV, Priputnevich TV, Machulin AV, Abashina TN, Chikileva IO, Donetskova AD, Takada K, Melnikov VG, Vasilenko RN, Khlebnikov VS, Samoilenko VA, Nikonov IN, Sukhikh GT, Uversky VN, Karlyshev AV. S-layer protein 2 of vaginal Lactobacillus crispatus 2029 enhances growth, differentiation, VEGF production and barrier functions in intestinal epithelial cell line Caco-2. Int J Biol Macromol 2021; 189:410-419. [PMID: 34437917 DOI: 10.1016/j.ijbiomac.2021.08.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
We have previously demonstrated the ability of the human vaginal strain Lactobacillus crispatus 2029 (LC2029) for strong adhesion to cervicovaginal epithelial cells, expression of the surface layer protein 2 (Slp2), and antagonistic activity against urogenital pathogens. Slp2 forms regular two-dimensional structure around the LC2029 cells,which is secreted into the medium and inhibits intestinal pathogen-induced activation of caspase-9 and caspase-3 in the human intestinal Caco-2 cells. Here, we elucidated the effects of soluble Slp2 on adhesion of proteobacteria pathogens inducing necrotizing enterocolitis (NEC), such as Escherichia coli ATCC E 2348/69, E. coli ATCC 31705, Salmonella Enteritidis ATCC 13076, Campylobacter jejuni ATCC 29428, and Pseudomonas aeruginosa ATCC 27853 to Caco-2 cells, as well as on growth promotion, differentiation, vascular endothelial growth factor (VEGF) production, and intestinal barrier function of Caco-2 cell monolayers. Slp2 acts as anti-adhesion agent for NEC-inducing proteobacteria, promotes growth of immature Caco-2 cells and their differentiation, and enhances expression and functional activity of sucrase, lactase, and alkaline phosphatase. Slp2 stimulates VEGF production, decreases paracellular permeability, and increases transepithelial electrical resistance, strengthening barrier function of Caco-2 cell monolayers. These data support the important role of Slp2 in the early postnatal development of the human small intestine enterocytes.
Collapse
Affiliation(s)
- Vyacheslav M Abramov
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Igor V Kosarev
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Tatiana V Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Tatiana N Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Irina O Chikileva
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia; Laboratory of Cell Immunity, Blokhin National Research, Center of Oncology Ministry of Health RF, Moscow 115478, Russia
| | | | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Vyacheslav G Melnikov
- Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow 152212, Russia
| | - Raisa N Vasilenko
- Institute of Immunological Engineering, Lyubuchany 142380, Moscow Region, Russia
| | | | - Vladimir A Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", Pushchino 142290, Moscow Region, Russia
| | - Ilya N Nikonov
- Federal State Education Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow 109472, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow 117997, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Andrey V Karlyshev
- Department of Science, Engineering and Computing, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
10
|
Mai T, Tong Y, Jiang F. Investigation and analysis of pain after dental implantation and its influencing factors. Am J Transl Res 2021; 13:12065-12070. [PMID: 34786143 PMCID: PMC8581909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study investigated and analyzed the pain degree after dental implantation and its influencing factors, and provided a scientific basis for reducing post-surgical pain in patients. METHODS A total of 137 patients who underwent dental implantation between June 2018 to December 2019 were selected as the research subjects. Their pain intensity immediately after surgery, 24 h after surgery, and 72 h after surgery were evaluated respectively by a numerical rating scale (NRS), and the factors that affected the postoperative pain were analyzed by univariate and multivariate logistic regression analysis. RESULTS The pain intensity of patients at 24 h after dental implantation was more serious than immediately after operation and 72 h after operation (P<0.05). The results of univariate and multivariate logistic regression analysis showed that the duration of surgery and whether analgesic drug was taken postoperatively were used in the regression model (P<0.05), which are independent risk factors for the occurrence of pain 24 h after surgery. CONCLUSION The pain degree of most patients after oral implantation is mild, and the most obvious pain reaction is 24 h after operation. The use of postoperative analgesics can effectively relieve the pain of patients, and the long duration of surgery is one of the key factors leading to postoperative pain.
Collapse
Affiliation(s)
- Tingting Mai
- Department of Stomatology, Haikou Longhua Mai Tingting Dental ClinicHaikou 570105, Hainan, China
| | - Yuanwu Tong
- Department of Stomatology, Sanya Central Hospital (The Third People’s Hospital of Hainan Province)Sanya 572000, Hainan, China
| | - Fengyun Jiang
- Department of Stomatology, Hainan Provincial People’s HospitalHaikou 570105, Hainan, China
| |
Collapse
|
11
|
Wu H, Wang Y, Yao Q, Fan L, Meng L, Zheng N, Li H, Wang J. Alkaline phosphatase attenuates LPS-induced liver injury by regulating the miR-146a-related inflammatory pathway. Int Immunopharmacol 2021; 101:108149. [PMID: 34634739 DOI: 10.1016/j.intimp.2021.108149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS) can remain in dairy products after the sterilization of milk powder and may pose a threat to the health of infants and young children. There is a large amount of alkaline phosphatase (ALP) in raw milk, which can remove the phosphate bond of LPS, thus, detoxifying it. ALP is regarded as an indicator of the success of milk sterilization due to its strong heat resistance. ALP can alleviate the toxicity of LPS in enteritis and nephritis models, but the mechanism by which oral-intake of ALP protects liver tissue from LPS stimulation is unclear. In this study, an in vivo acute mouse liver injury model was induced by C. sakazakii LPS (200 μg/kg) and used to verify the protective mechanism of ALP (200 U/kg) on mice livers. The related pathways were also verified by in vitro cell culture. Enzyme linked immunosorbent assays (ELISAs), quantitative reverse transcription PCR (RT-qPCR) and western blotting were used to detect the levels of inflammatory factors at the protein level and RNA level, and to confirm the inflammation of liver tissue caused by LPS. ALP was found to alleviate acute liver injury in vitro by activating miR-146a. We found that ALP could up-regulate the level of miR146a and subsequently alleviates the expression of TLR4, TNF-α, matured IL-1β, and NF-κB in mouse liver tissue and hepatocytes; thus, reducing liver inflammation. Herein, we demonstrated for the first time that oral-intake of ALP protected liver tissue by up-regulating the expression of miR-146a and alleviating inflammatory reactions; thus, providing a research basis for the proper processing of milk. This study also suggests that producers should improve the awareness of the protective effects of bioactive proteins in raw milk.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianqian Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Morais J, Marques C, Faria A, Teixeira D, Barreiros-Mota I, Durão C, Araújo J, Ismael S, Brito S, Cardoso M, Macedo I, Pereira E, Tomé T, Calhau C. Influence of Human Milk on Very Preterms' Gut Microbiota and Alkaline Phosphatase Activity. Nutrients 2021; 13:1564. [PMID: 34066473 PMCID: PMC8148101 DOI: 10.3390/nu13051564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
The FEEDMI Study (NCT03663556) evaluated the influence of infant feeding (mother's own milk (MOM), donor human milk (DHM) and formula) on the fecal microbiota composition and alkaline phosphatase (ALP) activity in extremely and very preterm infants (≤32 gestational weeks). In this observational study, preterm infants were recruited within the first 24 h after birth. Meconium and fecal samples were collected at four time points (between the 2nd and the 26th postnatal days. Fecal microbiota was analyzed by RT-PCR and by 16S rRNA sequencing. Fecal ALP activity, a proposed specific biomarker of necrotizing enterocolitis (NEC), was evaluated by spectrophotometry at the 26th postnatal day. A total of 389 fecal samples were analyzed from 117 very preterm neonates. Human milk was positively associated with beneficial bacteria, such as Bifidobacterium, Bacteroides ovatus, and Akkermancia muciniphila, as well as bacterial richness. Neonates fed with human milk during the first week of life had increased Bifidobacterium content and fecal ALP activity on the 26th postnatal day. These findings point out the importance of MOM and DHM in the establishment of fecal microbiota on neonates prematurely delivered. Moreover, these results suggest an ALP pathway by which human milk may protect against NEC.
Collapse
Affiliation(s)
- Juliana Morais
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Cláudia Marques
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Faria
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diana Teixeira
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Medical School, Unidade Universitária Lifestyle Medicine José de Mello Saúde, 1169-056 Lisboa, Portugal
| | - Inês Barreiros-Mota
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Durão
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- EPIUnit-Institute of Public Health, Universidade do Porto, 4050-600 Porto, Portugal
| | - João Araújo
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Shámila Ismael
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Sara Brito
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Manuela Cardoso
- Nutrition and Dietetics Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal;
| | - Israel Macedo
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Esmeralda Pereira
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Teresa Tomé
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Conceição Calhau
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Medical School, Unidade Universitária Lifestyle Medicine José de Mello Saúde, 1169-056 Lisboa, Portugal
| |
Collapse
|
13
|
An J, Cho J. Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:114-124. [PMID: 33987589 PMCID: PMC7882845 DOI: 10.5187/jast.2021.e12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
The objective of this study was to characterize the enzymatic hydrolysis of
lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of
wheat phytase-treated LPS on in vitro toxicity, cell viability
and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells
compared with the intact LPS. The phosphatase activity of wheat phytase towards
LPS was investigated in the presence or absence of inhibitors such as
L-phenylalanine and L-homoarginine. In vitro toxicity of LPS
hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell
viability in human aortic endothelial (HAE) cells exposed to LPS treated with
wheat phytase in comparison to intact LPS was measured. The release of IL-8 in
human intestinal epithelial cell line, HT-29 cells applied to LPS treated with
wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed
LPS, resulting in a significant release of inorganic phosphate for 1 h
(p < 0.05). Furthermore, the degradation of LPS by
wheat phytase was nearly unaffected by the addition of L-phenylalanine, the
inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the
inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively
reduced the in vitro toxicity of LPS, resulting in a retention
of 63% and 54% of its initial toxicity after 1–3 h of the enzyme
reaction, respectively (p < 0.05). Intact LPS decreased
the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase
counteracted the inhibitory effect on cell viability. LPS treated with wheat
phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29
cell to 14% (p < 0.05) when compared with intact LPS. In
conclusion, wheat phytase is a potential therapeutic candidate and prophylactic
agent for control of infections induced by pathogenic Gram-negative bacteria and
associated LPS-mediated inflammatory diseases in animal husbandry.
Collapse
Affiliation(s)
- Jeongmin An
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
14
|
Alvarenga L, Cardozo LFMF, Lindholm B, Stenvinkel P, Mafra D. Intestinal alkaline phosphatase modulation by food components: predictive, preventive, and personalized strategies for novel treatment options in chronic kidney disease. EPMA J 2020; 11:565-579. [PMID: 33240450 PMCID: PMC7680467 DOI: 10.1007/s13167-020-00228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Alkaline phosphatase (AP) is a ubiquitous membrane-bound glycoprotein that catalyzes phosphate monoesters' hydrolysis from organic compounds, an essential process in cell signaling. Four AP isozymes have been described in humans, placental AP, germ cell AP, tissue nonspecific AP, and intestinal AP (IAP). IAP plays a crucial role in gut microbial homeostasis, nutrient uptake, and local and systemic inflammation, and its dysfunction is associated with persistent inflammatory disorders. AP is a strong predictor of mortality in the general population and patients with cardiovascular and chronic kidney disease (CKD). However, little is known about IAP modulation and its possible consequences in CKD, a disease characterized by gut microbiota imbalance and persistent low-grade inflammation. Mitigating inflammation and dysbiosis can prevent cardiovascular complications in patients with CKD, and monitoring factors such as IAP can be useful for predicting those complications. Here, we review IAP's role and the results of nutritional interventions targeting IAP in experimental models to prevent alterations in the gut microbiota, which could be a possible target of predictive, preventive, personalized medicine (PPPM) to avoid CKD complications. Microbiota and some nutrients may activate IAP, which seems to have a beneficial impact on health; however, data on CKD remains scarce.
Collapse
Affiliation(s)
- L. Alvarenga
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
| | - L. F. M. F. Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| | - B. Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - P. Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - D. Mafra
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| |
Collapse
|
15
|
Han Y, Chen J, Li Z, Chen H, Qiu H. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron 2020; 148:111811. [DOI: 10.1016/j.bios.2019.111811] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
|
16
|
Rodríguez-Benítez MV, Gámez-Belmonte R, Gil-Campos M, Hernández-Chirlaque C, Bouzas PR, Sánchez de Medina F, Martínez-Augustin O. Premature Birth Infants Present Elevated Inflammatory Markers in the Meconium. Front Pediatr 2020; 8:627475. [PMID: 33537270 PMCID: PMC7848191 DOI: 10.3389/fped.2020.627475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Prematurity, a well-established risk factor for various intestinal diseases in newborns, results in increased morbidity and mortality. However, the intestinal inflammatory status of preterm (PT) infants has been poorly characterized. Here we have broadly described the intestinal and systemic inflammatory status of PT children. Materials and Methods: Meconium and plasma from 39 PT and 32 full term (T) newborns were studied. Fecal calprotectin, polymorphonuclear leukocyte elastase (PMN-E), TNF, IL-17A, IL-8, IP-10, MCP-1, MIP-1, IL-1β, IL-1α, and E-selectin and the enzymatic activities of myeloperoxidase (MPO) and alkaline phosphatase (AP) in meconium were measured. Plasma levels of AP, hepatocyte growth factor, nerve growth factor (NGF), proinflammatory cytokines, leptin, adiponectin, PAI-1, and resistin were also determined. Correlations with gestational age (GA) and birth weight (BW) were studied. Results: Neutrophil derived PMN-E, MPO and calprotectin were increased in the meconium of PT compared to T newborns, while AP was decreased. No significant differences were found in other inflammatory parameters. Considering data from all children, GA and BW showed inverse correlation with neutrophil markers, while AP directly correlated with BW. Plasma levels of IL-1β and NGF were enhanced in PT infants, and were also negatively correlated with BW. PT children additionally showed neutropenia and decreased adiponectin, leptin, haematocrit, and haemoglobin. These parameters (neutrophils, adiponectin, and so forth) were positively correlated with GA and BW, while IL-8, MCP-1, PAI-1, and plasma AP were negatively correlated. PT children showing postnatal morbidity exhibited increased meconium MPO and MIP-1α. Conclusion: PT neonates present a significant elevation of intestinal inflammatory parameters, characterized by the presence of neutrophil markers, associated with mild systemic inflammation.
Collapse
Affiliation(s)
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Mercedes Gil-Campos
- Unit of Pediatrics Metabolism, Reina Sofia University Hospital, University of Córdoba, IMIBIC, CIBEROBN, Córdoba, Spain
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Ciencia y Tecnología de los Alimentos José Mataix, University of Granada, Granada, Spain
| | - Paula R Bouzas
- Department of Statistics, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, Instituto de Ciencia y Tecnología de los Alimentos José Mataix, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Barseghyan K, Gayer C, Azhibekov T. Differences in Serum Alkaline Phosphatase Levels in Infants with Spontaneous Intestinal Perforation versus Necrotizing Enterocolitis with Perforation. Neonatology 2020; 117:349-357. [PMID: 32750698 DOI: 10.1159/000509617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Data on laboratory markers of spontaneous intestinal perforation (SIP) and necrotizing enterocolitis (NEC) remain sparse. OBJECTIVE To compare serum alkaline phosphatase levels in infants with bowel perforation secondary to SIP versus surgical NEC, and then investigate the possible role of serum alkaline phosphatase in differentiating infants with these conditions. METHODS A retrospective case-control study of infants admitted with bowel perforation from 2005 to 2015. Demographic and prenatal data, postnatal exposures, and clinical, laboratory, and radiographic findings were extracted from inpatient medical records and analyzed using regression analysis. RESULTS Of 114 outborn infants included, 48 infants had SIP (cases) and 66 had NEC (controls). Upon admission from the referring hospital, the serum alkaline phosphatase level was significantly higher in infants with SIP, i.e., a median value of 782 versus236 U/L in NEC patients (p < 0.0001), with an adjusted odds ratio (OR) of 4.3 (p < 0.05) when the level was >500 U/L in multivariate regression model. Infants with SIP had significantly younger gestational age, presented earlier in life, primarily with pneumoperitoneum, and had greater exposure to steroids and indomethacin compared to infants with NEC. Alkaline phosphatase levels decreased rapidly in infants with SIP following admission. CONCLUSION A transient increase in serum alkaline phosphatase level is independently associated with SIP when compared to NEC. Studies to confirm the role of alkaline phosphatase in the diagnosis of SIP are necessary and have potentially significant clinical and prognostic implications.
Collapse
Affiliation(s)
- Karine Barseghyan
- Division of Neonatology, LAC+USC Medical Center/Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Kaiser Permanente Panorama City and Woodland Hills Medical Centers, Los Angeles, California, USA
| | - Christopher Gayer
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Timur Azhibekov
- Division of Neonatology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, California, USA, .,Division of Neonatology, Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,
| |
Collapse
|