1
|
Huang J, Wang W, Cheng R, Liu X, Chen L, Luo T. A multi-parametric MRI study on changes in the structure, function, and connectivity of thalamic subregions and their relationship with cognitive impairment in patients with subcortical ischemic vascular disease. Brain Res 2024; 1850:149420. [PMID: 39725375 DOI: 10.1016/j.brainres.2024.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Prior researches have reported abnormal changes of thalamus in patients with subcortical ischemic vascular disease (SIVD), which was usually analyzed as a whole. However, it was currently unclear whether the structure, function and connectivity of thalamic subregions were differentially affected by this disease and affected different cognitive functions. METHODS This study recruited 30 SIVD patients with cognitive impairment (SIVD-CI), 30 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls. Then we compared the volume, local brain activity, structural connectivity and functional connectivity (FC) of thalamic subregions among three groups using multi-parameter MRI images. Finally, this study analyzed the relationship between these significant values and cognitive performance. RESULTS In the SIVD-CI group, the weakened FC between temporal thalamus and frontal cortex, as well as the enhanced FC between temporal thalamus and motor cortex, were significantly correlated with executive impairment; the weakened structural connectivity between the thalamic subregions (pre-frontal thalamus, temporal thalamus and pre-motor thalamus) and the temporal and frontal cortices were significantly related to the declined auditory and working memory (P < 0.05). Moreover, patients in the SIVD-CU group showed no abnormalities in FC, but exhibited a similar pattern of structural connectivity injury to the SIVD-CI group, which was relatively severer. Unexpectedly, there were no significant differences in the volume and local brain activity of all thalamic subregions among the three groups. CONCLUSIONS The functional and structural connectivity damages between the specific thalamic subregions and the specific cortices were correlated with the specific cognitive impairment in SIVD patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wenwen Wang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Runtian Cheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaoshuang Liu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Chen
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Zhang S, Zhao M, Sun J, Wen J, Li M, Wang C, Xu Q, Wang J, Sun X, Cheng L, Xue X, Wang X, Jia X. Alterations in degree centrality and functional connectivity in tension-type headache: a resting-state fMRI study. Brain Imaging Behav 2024; 18:819-829. [PMID: 38512647 DOI: 10.1007/s11682-024-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Previous studies have provided evidence of structural and functional changes in the brains of patients with tension-type headache (TTH). However, investigations of functional connectivity alterations in TTH have been inconclusive. The present study aimed to investigate abnormal intrinsic functional connectivity patterns in patients with TTH through the voxel-wise degree centrality (DC) method as well as functional connectivity (FC) analysis. A total of 33 patients with TTH and 30 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning and were enrolled in the final study. The voxel-wise DC method was performed to quantify abnormalities in the local functional connectivity hubs. Nodes with abnormal DC were used as seeds for further FC analysis to evaluate alterations in functional connectivity patterns. In addition, correlational analyses were performed between abnormal DC and FC values and clinical features. Compared with HCs, patients with TTH had higher DC values in the left middle temporal gyrus (MTG.L) and lower DC values in the left anterior cingulate and paracingulate gyri (ACG.L) (GRF, voxel-wise p < 0.05, cluster-wise p < 0.05, two-tailed). Seed-based FC analyses revealed that patients with TTH showed greater connections between ACG.L and the right cerebellum lobule IX (CR-IX.R), and smaller connections between ACG.L and ACG.L. The MTG.L showed increased FC with the ACG.L, and decreased FC with the right caudate nucleus (CAU.R) and left precuneus (PCUN.L) (GRF, voxel-wise p < 0.05, cluster-wise p < 0.05, two-tailed). Additionally, the DC value of the MTG.L was negatively correlated with the DASS-depression score (p = 0.046, r=-0.350). This preliminary study provides important insights into the pathophysiological mechanisms of TTH.
Collapse
Affiliation(s)
- Shuxian Zhang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiazhang Sun
- Ophthalmologic Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Jianjie Wen
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Chao Wang
- Basic Support Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Qinyan Xu
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Jili Wang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Xihe Sun
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Xiaomeng Xue
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China.
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China.
| | - Xize Jia
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China.
| |
Collapse
|
3
|
Wang L, Ma Q, Sun X, Xu Z, Zhang J, Liao X, Wang X, Wei D, Chen Y, Liu B, Huang CC, Zheng Y, Wu Y, Chen T, Cheng Y, Xu X, Gong Q, Si T, Qiu S, Lin CP, Cheng J, Tang Y, Wang F, Qiu J, Xie P, Li L, He Y, Xia M, Zhang Y, Li L, Cheng J, Gong Q, Li L, Lin CP, Qiu J, Qiu S, Si T, Tang Y, Wang F, Xie P, Xu X, Xia M. Frequency-resolved connectome alterations in major depressive disorder: A multisite resting fMRI study. J Affect Disord 2023; 328:47-57. [PMID: 36781144 DOI: 10.1016/j.jad.2023.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Functional connectome studies have revealed widespread connectivity alterations in major depressive disorder (MDD). However, the low frequency bandpass filtering (0.01-0.08 Hz or 0.01-0.1 Hz) in most studies have impeded our understanding on whether and how these alterations are affected by frequency of interest. METHODS Here, we performed frequency-resolved (0.01-0.06 Hz, 0.06-0.16 Hz and 0.16-0.24 Hz) connectome analyses using a large-sample resting-state functional MRI dataset of 1002 MDD patients and 924 healthy controls from seven independent centers. RESULTS We reported significant frequency-dependent connectome alterations in MDD in left inferior parietal, inferior temporal, precentral, and fusiform cortices and bilateral precuneus. These frequency-dependent connectome alterations are mainly derived by abnormalities of medium- and long-distance connections and are brain network-dependent. Moreover, the connectome alteration of left precuneus in high frequency band (0.16-0.24 Hz) is significantly associated with illness duration. LIMITATIONS Multisite harmonization model only removed linear site effects. Neurobiological underpinning of alterations in higher frequency (0.16-0.24 Hz) should be further examined by combining fMRI data with respiration, heartbeat and blood flow recordings in future studies. CONCLUSIONS These results highlight the frequency-dependency of connectome alterations in MDD and the benefit of examining connectome alteration in MDD under a wider frequency band.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qing Ma
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; School of Systems Science, Beijing Normal University, Beijing, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiaying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ching-Po Lin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK; Institute of Neuroscience, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | | | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Yihe Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu H, Xiang Y, Liu J, Feng J, Du S, Luo T, Li Y, Zeng C. Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurosci 2022; 16:1030230. [PMID: 36507336 PMCID: PMC9730699 DOI: 10.3389/fnins.2022.1030230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives To compare parameters of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) to evaluate which can better describe the microstructural changes of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patients and to characterize the non-Gaussian diffusion patterns of the whole brain and their correlation with neuropsychological impairments in these patients. Materials and methods DTI and DKI parameters were measured in 57 patients with anti-NMDAR encephalitis and 42 healthy controls. Voxel-based analysis was used to evaluate group differences between white matter and gray matter separately. The modified Rankin Scale (mRS) was used to evaluate the severity of the neurofunctional recovery of patients, the Montreal Cognitive Assessment (MoCA) was used to assess global cognitive performance, and the Hamilton Depression Scale (HAMD) and fatigue severity scale (FSS) were used to evaluate depressive and fatigue states. Results Patients with anti-NMDAR encephalitis showed significantly decreased radial kurtosis (RK) in the right extranucleus in white matter (P < 0.001) and notably decreased kurtosis fractional anisotropy (KFA) in the right precuneus, the right superior parietal gyrus (SPG), the left precuneus, left middle occipital gyrus, and left superior occipital gyrus in gray matter (P < 0.001). Gray matter regions with decreased KFA overlapped with those with decreased RK in the left middle temporal gyrus, superior temporal gyrus (STG), supramarginal gyrus (SMG), postcentral gyrus (POCG), inferior parietal but supramarginal gyrus, angular gyrus (IPL) and angular gyrus (ANG) (P < 0.001). The KFA and RK in the left ANG, IPL and POCG correlated positively with MoCA scores. KFA and RK in the left ANG, IPL, POCG and SMG correlated negatively with mRS scores. KFA in the left precuneus and right SPG as well as RK in the left STG correlated negatively with mRS scores. No significant correlation between KFA and RK in the abnormal brain regions and HAMD and FSS scores was found. Conclusion The microstructural changes in gray matter were much more extensive than those in white matter in patients with anti-NMDAR encephalitis. The brain damage reflected by DKI parameters, which have higher sensitivity than parameters of DTI, correlated with cognitive impairment and the severity of the neurofunctional recovery.
Collapse
Affiliation(s)
- Hanjing Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yongmei Li,
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Chun Zeng,
| |
Collapse
|