1
|
Mounika V, P IK, Siluvai S, G K. Carbon Monoxide in Healthcare Monitoring Balancing Potential and Challenges in Public Health Perspective: A Narrative Review. Cureus 2024; 16:e74052. [PMID: 39712838 PMCID: PMC11661877 DOI: 10.7759/cureus.74052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Carbon monoxide (CO) has medicinal potential and harmful qualities. However, excessive exposure to CO can lead to severe organ failure. CO is exogenously and endogenously generated within the human body. Ongoing research aims to uncover the beneficial aspects of CO. It serves as a biomarker for inflammation and other serious illnesses. Preclinical trials exploring CO's application have indicated potential benefits in addressing conditions such as Ischemia, Tendonitis, Neuropathic pain, and even cancer therapy. Cardiovascular disease emerges as a particularly promising target for CO therapy due to its potent vasodilatory effects. While research into CO-based therapeutics has shown promise in experimental and preclinical settings, clinical translation and widespread adoption remain in the early stages. This review will illuminate the advantageous role of CO as a biomarker alongside the obstacles and challenges associated with its implementation.
Collapse
Affiliation(s)
- V Mounika
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Indumathi K P
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Sibyl Siluvai
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Krishnaprakash G
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
2
|
Takano APC, de André CDS, de Almeida R, Waked D, Veras MM, Saldiva PHN. Association of pulmonary black carbon accumulation with cardiac fibrosis in residents of Sao Paulo, Brazil. ENVIRONMENTAL RESEARCH 2024; 248:118380. [PMID: 38307182 DOI: 10.1016/j.envres.2024.118380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Evidence suggests that myocardial interstitial fibrosis, resulting from cardiac remodeling, may possibly be influenced by mechanisms activated through the inhalation of airborne pollutants. However, limited studies have explored the relationship between lifetime exposure to carbon-based particles and cardiac fibrosis, specially using post-mortem samples. This study examined whether long-term exposure to air pollution (estimated by black carbon accumulated in the lungs) is associated with myocardial fibrosis in urban dwellers of megacity of Sao Paulo. Data collection included epidemiological and autopsy-based approaches. Information was obtained by interviewing the next of kin and through the pathologist's report. The individual index of exposure to carbon-based particles, which we designed as the fraction of black carbon (FBC), was estimated through quantification of particles on the macroscopic lung surface. Myocardium samples were collected for histopathological analysis to evaluate the fraction of cardiac fibrosis. The association between cardiac fibrosis and FBC, age, sex, smoking status and hypertension was assessed by means of multiple linear regression models. Our study demonstrated that the association of FBC with cardiac fibrosis is influenced by smoking status and hypertension. Among hypertensive individuals, the cardiac fibrosis fraction tended to increase with the increase of the FBC in both groups of smokers and non-smokers. In non-hypertensive individuals, the association between cardiac fibrosis fraction and FBC was observed primarily in smokers. Long-term exposure to tobacco smoke and environmental particles may contribute to the cardiac remodeling response in individuals with pre-existing hypertension. This highlights the importance of considering hypertension as an additional risk factor for the health effects of air pollution on the cardiovascular system. Moreover, the study endorses the role of autopsy to investigate the effects of urban environment and personal habits in determining human disease.
Collapse
Affiliation(s)
- Ana Paula Cremasco Takano
- Universidade de Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil; Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Dunia Waked
- Universidade de Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | | | | |
Collapse
|
3
|
Awokola B, Lawin H, Johnson O, Humphrey A, Nzogo D, Zubar L, Okello G, Semple S, Awokola E, Amusa G, Mohammed N, Jewell C, Erhart A, Mortimer K, Devereux G, Mbatchou-Ngahane BH. Non-communicable airway disease and air pollution in three African Countries: Benin, Cameroon and The Gambia. IJTLD OPEN 2024; 1:174-181. [PMID: 38988410 PMCID: PMC11231821 DOI: 10.5588/ijtldopen.23.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Air pollution exposure can increase the risk of development and exacerbation of chronic airway disease (CAD). We set out to assess CAD patients in Benin, Cameroon and The Gambia and to compare their measured exposures to air pollution. METHODOLOGY We recruited patients with a diagnosis of CAD from four clinics in the three countries. We collected epidemiological, spirometric and home air pollution data. RESULTS Of the 98 adults recruited, 56 were men; the mean age was 51.6 years (standard deviation ±17.5). Most (69%) patients resided in cities and ever smoking was highest in Cameroon (23.0%). Cough, wheeze and shortness of breath were reported across the countries. A diagnosis of asthma was present in 74.0%; 16.3% had chronic obstructive pulmonary disease and 4.1% had chronic bronchitis. Prevalence of airflow obstruction was respectively 77.1%, 54.0% and 64.0% in Benin, Cameroon, and Gambia. Across the sites, 18.0% reported >5 exacerbations. The median home particulate matter less than 2.5 μm in diameter (PM2.5) was respectively 13.0 μg/m3, 5.0 μg/m3 and 4.4 μg/m3. The median home carbon monoxide (CO) exposures were respectively 1.6 parts per million (ppm), 0.3 ppm and 0.4 ppm. Home PM2.5 differed significantly between the three countries (P < 0.001) while home CO did not. CONCLUSION Based on these results, preventive programmes should focus on ensuring proper spirometric diagnosis, good disease control and reduction in air pollution exposure.
Collapse
Affiliation(s)
- B Awokola
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - H Lawin
- Occupational Health Unit, University of Abomey Calavi, Abomey-Calavi, Benin Republic
| | - O Johnson
- Department of Mathematics, University of Manchester, Manchester, UK
| | - A Humphrey
- Department of Internal Medicine, Douala General Hospital, Douala
| | - D Nzogo
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - L Zubar
- Education for Health Africa, Cape Town, South Africa
| | - G Okello
- Prince of Wales Institute for Leadership Sustainability, University of Cambridge, Cambridge
| | - S Semple
- Institute for Social Marketing and Health, University of Stirling, Stirling, Scotland, UK
| | - E Awokola
- Department of Nursing, American International University of West Africa, The Gambia
| | - G Amusa
- Department of Internal Medicine, Jos University Teaching Hospital, Jos
- Department of Medicine, University of Jos, Jos, Nigeria
| | - N Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - C Jewell
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster University, Lancaster
| | - A Erhart
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - K Mortimer
- Cambridge Africa, Department of Pathology, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - G Devereux
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - B H Mbatchou-Ngahane
- Department of Internal Medicine, Douala General Hospital, Douala
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
4
|
McNeilly RJ, Schwanekamp JA, Hyder LS, Hatch JP, Edwards BT, Kirsh JA, Jackson JM, Jaworek T, Methner MM, Duran CM. Exposure to lead-free frangible firing emissions containing copper and ultrafine particulates leads to increased oxidative stress in firing range instructors. Part Fibre Toxicol 2022; 19:36. [PMID: 35570273 PMCID: PMC9107651 DOI: 10.1186/s12989-022-00471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since the introduction of copper based, lead-free frangible (LFF) ammunition to Air Force small arms firing ranges, instructors have reported symptoms including chest tightness, respiratory irritation, and metallic taste. These symptoms have been reported despite measurements determining that instructor exposure does not exceed established occupational exposure limits (OELs). The disconnect between reported symptoms and exposure limits may be due to a limited understanding of LFF firing byproducts and subsequent health effects. A comprehensive characterization of exposure to instructors was completed, including ventilation system evaluation, personal monitoring, symptom tracking, and biomarker analysis, at both a partially enclosed and fully enclosed range. Results Instructors reported symptoms more frequently after M4 rifle classes compared to classes firing only the M9 pistol. Ventilation measurements demonstrated that airflow velocities at the firing line were highly variable and often outside established standards at both ranges. Personal breathing zone air monitoring showed exposure to carbon monoxide, ultrafine particulate, and metals. In general, exposure to instructors was higher at the partially enclosed range compared to the fully enclosed range. Copper measured in the breathing zone of instructors, on rare occasions, approached OELs for copper fume (0.1 mg/m3). Peak carbon monoxide concentrations were 4–5 times higher at the partially enclosed range compared to the enclosed range and occasionally exceeded the ceiling limit (125 ppm). Biological monitoring showed that lung function was maintained in instructors despite respiratory symptoms. However, urinary oxidative stress biomarkers and urinary copper measurements were increased in instructors compared to control groups. Conclusions Consistent with prior work, this study demonstrates that symptoms still occurred despite exposures below OELs. Routine monitoring of symptoms, urinary metals, and oxidative stress biomarkers can help identify instructors who are particularly affected by exposures. These results can assist in guiding protective measures to reduce exposure and protect instructor health. Further, a longitudinal study is needed to determine the long-term health consequences of LFF firing emissions exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00471-0.
Collapse
|
5
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
6
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
7
|
Volk HE, Perera F, Braun JM, Kingsley SL, Gray K, Buckley J, Clougherty JE, Croen LA, Eskenazi B, Herting M, Just AC, Kloog I, Margolis A, McClure LA, Miller R, Levine S, Wright R. Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO. ENVIRONMENTAL RESEARCH 2021; 196:110320. [PMID: 33098817 PMCID: PMC8060371 DOI: 10.1016/j.envres.2020.110320] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Air pollution exposure is ubiquitous with demonstrated effects on morbidity and mortality. A growing literature suggests that prenatal air pollution exposure impacts neurodevelopment. We posit that the Environmental influences on Child Health Outcomes (ECHO) program will provide unique opportunities to fill critical knowledge gaps given the wide spatial and temporal variability of ECHO participants. OBJECTIVES We briefly describe current methods for air pollution exposure assessment, summarize existing studies of air pollution and neurodevelopment, and synthesize this information as a basis for recommendations, or a blueprint, for evaluating air pollution effects on neurodevelopmental outcomes in ECHO. METHODS We review peer-reviewed literature on prenatal air pollution exposure and neurodevelopmental outcomes, including autism spectrum disorder, attention deficit hyperactivity disorder, intelligence, general cognition, mood, and imaging measures. ECHO meta-data were compiled and evaluated to assess frequency of neurodevelopmental assessments and prenatal and infancy residential address locations. Cohort recruitment locations and enrollment years were summarized to examine potential spatial and temporal variation present in ECHO. DISCUSSION While the literature provides compelling evidence that prenatal air pollution affects neurodevelopment, limitations in spatial and temporal exposure variation exist for current published studies. As >90% of the ECHO cohorts have collected a prenatal or infancy address, application of advanced geographic information systems-based models for common air pollutant exposures may be ideal to address limitations of published research. CONCLUSIONS In ECHO we have the opportunity to pioneer unifying exposure assessment and evaluate effects across multiple periods of development and neurodevelopmental outcomes, setting the standard for evaluation of prenatal air pollution exposures with the goal of improving children's health.
Collapse
Affiliation(s)
- Heather E Volk
- Department of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | | | - Kimberly Gray
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering and Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Megan Herting
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amy Margolis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Rachel Miller
- Department of Medicine, Department of Pediatrics, The College of Physicians and Surgeons, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sarah Levine
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind Wright
- Department of Environmental Medicine and Public Health, And Pediatrics, Institute for Exposomics Research, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Lim N, Kim KH, Byun YT. Preparation of defected SWCNTs decorated with en-APTAS for application in high-performance nitric oxide gas detection. NANOSCALE 2021; 13:6538-6544. [PMID: 33885533 DOI: 10.1039/d0nr08919b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate highly sensitive and selective chemiresistive-type NO gas detection using defected single-walled carbon nanotubes (SWCNTs) decorated with N-[3-(trimethoxysilyl)propyl]ethylene diamine (en-APTAS) molecules. The defected SWCNTs were prepared via furnace annealing at 700 °C and confirmed by transmission electron microscopy. A single en-APTAS molecule has two amine groups acting as adsorption sites for NO gas, which can improve the NO response. The NO response was further enhanced when the defected SWCNTs were utilized because NO sensing reactions could occur on both the inner and outer walls of the defected SWCNTs. The en-APTAS decoration improved the NO response of the SWCNT-based gas sensing devices by 2.5 times; when the defected SWCNTs were used, the NO response was further improved by 3 times. Meanwhile, the recovery performance in a time-resolved response curve was significantly improved (45 times) via a simple rinsing process with ethanol. Specifically, the fabricated device did not respond to carbon monoxide (CO) or BTEX gas (i.e., a mixture of benzene, toluene, ethyl benzene, and xylene), indicating its high selectivity to NO gas. The results show the possibility of a high-performance SWCNT-based NO gas sensor applicable to healthcare fields requiring ppb-level detection, such as in vitro diagnostics (IVDs) of respiratory diseases.
Collapse
Affiliation(s)
- Namsoo Lim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | | | | |
Collapse
|
9
|
Ghorbani R, Blomberg A, Schmidt FM. Impact of breath sampling on exhaled carbon monoxide. J Breath Res 2020; 14:047105. [PMID: 33021205 DOI: 10.1088/1752-7163/abb479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of breath sampling on exhaled carbon monoxide (eCO) and related pulmonary gas exchange parameters is investigated in a study with 32 healthy non-smokers. Mid-infrared tunable diode laser absorption spectroscopy and well-controlled online sampling is used to precisely measure mouth- and nose-exhaled CO expirograms at exhalation flow rates (EFRs) of 250, 120 and 60 ml s-1, and for 10 s of breath-holding followed by exhalation at 120 ml s-1. A trumpet model with axial diffusion is employed to fit simulated exhalation profiles to the experimental expirograms, which provides equilibrium airway and alveolar CO concentrations and the average lung diffusing capacity in addition to end-tidal concentrations. For all breathing maneuvers, excellent agreement is found between mouth- and nose-exhaled end-tidal CO (ETCO), and the individual values for ETCO and alveolar diffusing capacity are consistent across maneuvers. The eCO parameters clearly show a dependence on EFR, where the lung diffusing capacity increases with EFR, while ETCO slightly decreases. End-tidal CO is largely independent of ambient air CO and alveolar diffusing capacity. While airway CO is slightly higher than, and correlates strongly with, ambient air CO, and there is a weak correlation with ETCO, the results point to negligible endogenous airway CO production in healthy subjects. An EFR of around 120 ml s-1 can be recommended for clinical eCO measurements. The employed method provides means to measure variations in endogenous CO, which can improve the interpretation of exhaled CO concentrations and the diagnostic value of eCO tests in clinical studies. Clinical trial registration number: 2017/306-31.
Collapse
Affiliation(s)
- Ramin Ghorbani
- Department of Applied Physics and Electronics, Umeå University, Umeå SE-90187, Sweden
| | | | | |
Collapse
|
10
|
Joubert BR, Mantooth SN, McAllister KA. Environmental Health Research in Africa: Important Progress and Promising Opportunities. Front Genet 2020; 10:1166. [PMID: 32010175 PMCID: PMC6977412 DOI: 10.3389/fgene.2019.01166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
The World Health Organization in 2016 estimated that over 20% of the global disease burden and deaths were attributed to modifiable environmental factors. However, data clearly characterizing the impact of environmental exposures and health endpoints in African populations is limited. To describe recent progress and identify important research gaps, we reviewed literature on environmental health research in African populations over the last decade, as well as research incorporating both genomic and environmental factors. We queried PubMed for peer-reviewed research articles, reviews, or books examining environmental exposures and health outcomes in human populations in Africa. Searches utilized medical subheading (MeSH) terms for environmental exposure categories listed in the March 2018 US National Report on Human Exposure to Environmental Chemicals, which includes chemicals with worldwide distributions. Our search strategy retrieved 540 relevant publications, with studies evaluating health impacts of ambient air pollution (n=105), indoor air pollution (n = 166), heavy metals (n = 130), pesticides (n = 95), dietary mold (n = 61), indoor mold (n = 9), per- and polyfluoroalkyl substances (PFASs, n = 0), electronic waste (n = 9), environmental phenols (n = 4), flame retardants (n = 8), and phthalates (n = 3), where publications could belong to more than one exposure category. Only 23 publications characterized both environmental and genomic risk factors. Cardiovascular and respiratory health endpoints impacted by air pollution were comparable to observations in other countries. Air pollution exposures unique to Africa and some other resource limited settings were dust and specific occupational exposures. Literature describing harmful health effects of metals, pesticides, and dietary mold represented a context unique to Africa. Studies of exposures to phthalates, PFASs, phenols, and flame retardants were very limited. These results underscore the need for further focus on current and emerging environmental and chemical health risks as well as better integration of genomic and environmental factors in African research studies. Environmental exposures with distinct routes of exposure, unique co-exposures and co-morbidities, combined with the extensive genomic diversity in Africa may lead to the identification of novel mechanisms underlying complex disease and promising potential for translation to global public health.
Collapse
Affiliation(s)
- Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | | | - Kimberly A McAllister
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
11
|
Gregorczyk-Maga I, Maga M, Wachsmann A, Janik MK, Chrzastek-Janik O, Bajkowski M, Partyka L, Koziej M. Air pollution may affect the assessment of smoking habits by exhaled carbon monoxide measurements. ENVIRONMENTAL RESEARCH 2019; 172:258-265. [PMID: 30822558 DOI: 10.1016/j.envres.2019.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND While European air quality policies reduce ambient carbon monoxide (CO) concentrations in general, there are still areas affected by high environmental CO exposure from transportation, industry and burning low-quality fossil fuels. We investigated, how these CO amounts might influence exhaled CO measurements used to monitor the smoking status of healthy subjects. METHODS A cross-sectional study of healthy adults living in areas of high air pollution (N = 742) and low air pollution (N = 197) in Poland. They completed a survey regarding their smoking habits and underwent necessary body measurements including exhaled CO concentration levels. RESULTS Ambient CO levels were much higher in highly pollutes cities. Also exhaled CO levels in subjects from high pollution areas were significantly higher, independent of subject smoking status (8.25 ppm vs. 3.26 ppm). Smokers exhaled more CO than non-smokers. Although the duration of smoking did not affect the CO levels, they were proportional to the number of cigarettes smoked during the day, especially for higher amounts of cigarettes and in unpolluted areas. It was possible to differentiate active from passive smokers in all areas, but the difference for passive smokers vs. non-smokers was significant only in low pollution city inhabitants. CONCLUSIONS Exhaled CO levels were confirmed to be a good indicator of smoking status and smoking pattern in healthy subjects. However, high environmental CO levels both increase baseline exhaled CO concentrations in non-smokers affecting their discrimination from passive smokers, and obscure categorizing cigarette consumption in heavy smokers. These findings add important evidence on both understanding of exhaled CO monitoring results and a significance of environmental CO exposure in areas with high pollution.
Collapse
Affiliation(s)
- Iwona Gregorczyk-Maga
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Krakow, Poland.
| | - Mikolaj Maga
- Department of Angiology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Wachsmann
- Department of Angiology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej K Janik
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warszawa, Poland
| | - Olga Chrzastek-Janik
- Department of Radiotherapy, The Maria Sklodowska-Curie Memorial Cancer Centre, Warszawa, Poland
| | | | - Lukasz Partyka
- Department of Angiology, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Koziej
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
Torpy F, Clements N, Pollinger M, Dengel A, Mulvihill I, He C, Irga P. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). AIR QUALITY, ATMOSPHERE, & HEALTH 2018; 11:163-170. [PMID: 29568336 PMCID: PMC5847137 DOI: 10.1007/s11869-017-0518-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 05/22/2023]
Abstract
In recent years, research into the efficacy of indoor air biofiltration mechanisms, notably living green walls, has become more prevalent. Whilst green walls are often utilised within the built environment for their biophilic effects, there is little evidence demonstrating the efficacy of active green wall biofiltration for the removal of volatile organic compounds (VOCs) at concentrations found within an interior environment. The current work describes a novel approach to quantifying the VOC removal effectiveness by an active living green wall, which uses a mechanical system to force air through the substrate and plant foliage. After developing a single-pass efficiency protocol to understand the immediate effects of the system, the active green wall was installed into a 30-m3 chamber representative of a single room and presented with the contaminant 2-butanone (methyl ethyl ketone; MEK), a VOC commonly found in interior environments through its use in textile and plastic manufacture. Chamber inlet levels of MEK remained steady at 33.91 ± 0.541 ppbv. Utilising a forced-air system to draw the contaminated air through a green wall based on a soil-less growing medium containing activated carbon, the combined effects of substrate media and botanical component within the biofiltration system showed statistically significant VOC reduction, averaging 57% single-pass removal efficiency over multiple test procedures. These results indicate a high level of VOC removal efficiency for the active green wall biofilter tested and provide evidence that active biofiltration may aid in reducing exposure to VOCs in the indoor environment.
Collapse
Affiliation(s)
- Fraser Torpy
- Plants and Environmental Quality Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Nicholas Clements
- Well Living Lab, Rochester, MN USA
- Delos Labs, Delos, New York, NY USA
- General Internal Medicine, Mayo Clinic, Rochester, MN USA
| | | | - Andy Dengel
- Building Research Establishment, Watford, UK
| | | | - Chuan He
- Well Living Lab, Rochester, MN USA
- Delos Labs, Delos, New York, NY USA
- General Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Peter Irga
- Plants and Environmental Quality Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|