1
|
Fang Y, Xia J, Lian Y, Zhang M, Kang Y, Zhao Z, Wang L, Yin P, Wang Z, Ye C, Zhou M, He Y. The burden of cardiovascular disease attributable to dietary risk factors in the provinces of China, 2002-2018: a nationwide population-based study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 37:100784. [PMID: 37693878 PMCID: PMC10485670 DOI: 10.1016/j.lanwpc.2023.100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 09/12/2023]
Abstract
Background The burden of cardiovascular diseases (CVDs) is on the rise in China, yet a comprehensive and systematic understanding of the temporal trends and distribution of CVD burden attributable to dietary factors across the provinces remains elusive. This study endeavors to provide a comprehensive depiction of the burden of CVDs attributable to dietary risk factors across China's geographical regions from 2002 to 2018. Methods Data from the China National Nutrition Surveys, the China Chronic Disease and Risk Factor Surveillance, the Hypertension Survey, and the Chinese Centre for Disease Control and Prevention cause-of-death reporting system were used to estimate the intake of dietary factor, the number of deaths, and disability-adjusted life years (DALYs), mortality rate, for ischemic heart disease (IHD), ischemic stroke (IS), hemorrhage and other stroke (HOS) attributable to dietary factors at national and provincial levels in China from 2002 to 2018. Using a comparative risk assessment approach, we estimated the proportion of CVDs burden attributable to suboptimal intake of seven dietary factors, both individually and collectively, among Chinese citizens aged 20 years or older. Finding The mean consumption of whole grains, soybeans, nuts, vegetables, fruits, red meat, and sugar-sweetened beverages (SSBs) exhibited an upward trend from 2002 to 2018. However, with the exception of red meat and SSBs, the average intake remained below the levels recommended levels outlined in the Chinese national dietary guidelines. Inadequate fruit, whole grain, and vegetables intake were the leading dietary risk factors for IHD, IS and HOS in China, while nuts, soybean and SSB were only associated with IHD mortality. From 2002 to 2018, the number of deaths and mortality rate for CVDs attributable to suboptimal diet among Chinese males were greater than that of females. With increasing age, the diet-related mortality rate for CVDs increased substantially. In 2018, the nationwide mortality rate attributable to diet was found to be 77.9 (95% UI, 77.5-78.1) per 100,000 population for IHD, 34.1 (95% UI, 33.8-34.2) for IS, and 32.8 (95% UI, 32.4-32.8) for HOS. Suboptimal diet was responsible for 16.0 million (95% UI, 13.8-18.4) DALYs and 1137.1 (95% UI, 980.4-1312.3) DALYs per 100,000 population for stroke, and 13.9 million (95% UI, 11.8-16.3) DALYs and 990.2 (95% UI, 841.2-1158.6) DALYs for IHD. Across the provinces of China, in 2018, the highest age-standardized mortality rates of all diet-related deaths were observed in Shandong (92.8 [95% UI, 89.9-93.3]) for IHD, Heilongjiang (38.1 [95% UI, 36.2-38.8]) for IS, and Tibet (68.3 [95% UI, 65.0-70.1]) for HOS. The highest diet related DALYs were observed in Henan (1.4 million [95% UI, 1.2-1.6] for IS, and 1.3 million [95% UI, 1.1-1.5] for IHD). Interpretation This study provides a comprehensive picture of the geographic variation and temporal trends of the burden of CVDs attributable to dietary risk factors at the national and provincial levels from 2002 to 2018 in China, highlighting the need for geographically targeted intervention strategies to improve the quality of diet and reduce the diet-related burden of CVDs. Funding National Key Research and Development Program of China (2018YFC1315303), National Natural Science Foundation of China (82103966).
Collapse
Affiliation(s)
- Yuehui Fang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Juan Xia
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yiyao Lian
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mei Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuting Kang
- Office of National Clinical Research for Geriatrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhenping Zhao
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Limin Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zengwu Wang
- Division of Prevention and Community Health, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Chen Ye
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuna He
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
2
|
Wei Y, Li Y, Wang S, Xiang Z, Li X, Wang Q, Dong W, Gao P, Dai L. Phytochemistry and pharmacology of Armeniacae semen Amarum: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116265. [PMID: 36806484 DOI: 10.1016/j.jep.2023.116265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Armeniacae Semen Amarum (Prunus armeniaca L. var. ansu Maxim., Ku xingren, bitter almond, ASA) is an important medicine in Traditional Chinese Medicine (TCM). It is widely used because of its remarkable curative effect in relieving cough and asthma, moistening intestines and defecating. AIM OF THE REVIEW This review aims to enlighten the deeper knowledge about ASA, giving a comprehensive overview of its traditional uses, phytochemistry, pharmacology and toxicology for future investigation of plant-based drugs and therapeutic applications. MATERIALS AND METHODS The databases used are Web of Science, PubMed, Baidu academic, Google academic, CNKI, Wanfang and VIP . In addition, detailed information on ASA was obtained from relevant monographs such as Chinese Pharmacopoeia. RESULTS The active components of ASA mainly include amygdalin, bitter almond oil, essential oil, protein, vitamin, trace elements and carbohydrates. The pharmacological studies have shown that ASA has beneficial effects such as antitussive, antiasthmatic, anti-inflammatory, analgesic, antioxidant, antitumour, cardioprotective, antifibrotic, immune regulatory, bowel relaxation, insecticidal, etc. CONCLUSIONS: Many reports have been published on ASA's various active ingredients and biological uses. However, only a few reviews on its phytoconstituents and pharmacological uses. In addition, the exploration and development of ASA in other fields also deserve more attention in future research.
Collapse
Affiliation(s)
- Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanan Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zedong Xiang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Gonçalves B, Pinto T, Aires A, Morais MC, Bacelar E, Anjos R, Ferreira-Cardoso J, Oliveira I, Vilela A, Cosme F. Composition of Nuts and Their Potential Health Benefits-An Overview. Foods 2023; 12:942. [PMID: 36900459 PMCID: PMC10000569 DOI: 10.3390/foods12050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The possibility that nut intake may defend human health is an interesting point of view and has been investigated worldwide. Consequently, nuts are commonly promoted as healthy. In recent decades, the number of investigations proposing a correlation between nut consumption and a decrease in the risk of key chronic diseases has continued to increase. Nuts are a source of intake of fiber, and dietary fiber is associated with a reduced occurrence of obesity and cardiovascular diseases. Nuts likewise provide minerals and vitamins to the diet and supply phytochemicals that function as antioxidant, anti-inflammatory, and phytoestrogens agents and other protective mechanisms. Therefore, the main goal of this overview is to summarize current information and to describe the utmost new investigation concerning the health benefits of certain nuts.
Collapse
Affiliation(s)
- Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Alfredo Aires
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maria Cristina Morais
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge Ferreira-Cardoso
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ivo Oliveira
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Alice Vilela
- CQ-VR, Chemistry Research Centre—Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre—Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Tomishima H, Luo K, Mitchell AE. The Almond ( Prunus dulcis): Chemical Properties, Utilization, and Valorization of Coproducts. Annu Rev Food Sci Technol 2021; 13:145-166. [PMID: 34936815 DOI: 10.1146/annurev-food-052720-111942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almonds (Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Haruka Tomishima
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA;
| | - Kathleen Luo
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA;
| | - Alyson E Mitchell
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA;
| |
Collapse
|
5
|
Doherty A, Wall A, Khaldi N, Kussmann M. Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Front Genet 2021; 12:768979. [PMID: 34868255 PMCID: PMC8640466 DOI: 10.3389/fgene.2021.768979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Scientific research consistently demonstrates that diseases may be delayed, treated, or even prevented and, thereby, health may be maintained with health-promoting functional food ingredients (FFIs). Consumers are increasingly demanding sound information about food, nutrition, nutrients, and their associated health benefits. Consequently, a nutrition industry is being formed around natural foods and FFIs, the economic growth of which is increasingly driven by consumer decisions. Information technology, in particular artificial intelligence (AI), is primed to vastly expand the pool of characterised and annotated FFIs available to consumers, by systematically discovering and characterising natural, efficacious, and safe bioactive ingredients (bioactives) that address specific health needs. However, FFI-producing companies are lagging in adopting AI technology for their ingredient development pipelines for several reasons, resulting in a lack of efficient means for large-scale and high-throughput molecular and functional ingredient characterisation. The arrival of the AI-led technological revolution allows for the comprehensive characterisation and understanding of the universe of FFI molecules, enabling the mining of the food and natural product space in an unprecedented manner. In turn, this expansion of bioactives dramatically increases the repertoire of FFIs available to the consumer, ultimately resulting in bioactives being specifically developed to target unmet health needs.
Collapse
|
6
|
Dreher ML. A Comprehensive Review of Almond Clinical Trials on Weight Measures, Metabolic Health Biomarkers and Outcomes, and the Gut Microbiota. Nutrients 2021; 13:1968. [PMID: 34201139 PMCID: PMC8229803 DOI: 10.3390/nu13061968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
This comprehensive narrative review of 64 randomized controlled trials (RCTs) and 14 systematic reviews and/or meta-analyses provides an in-depth analysis of the effect of almonds on weight measures, metabolic health biomarkers and outcomes, and the colonic microbiota, with extensive use of figures and tables. Almonds are a higher energy-dense (ED) food that acts like a lower ED food when consumed. Recent systematic reviews and meta-analyses of nut RCTs showed that almonds were the only nut that had a small but significant decrease in both mean body mass and fat mass, compared to control diets. The biological mechanisms for almond weight control include enhanced displacement of other foods, decreased macronutrient bioavailability for a lower net metabolizable energy (ME), upregulation of acute signals for reduced hunger, and elevated satiety and increased resting energy expenditure. The intake of 42.5 g/day of almonds significantly lowered low-density lipoprotein cholesterol (LDL-C), 10-year Framingham estimated coronary heart disease (CHD) risk and associated cardiovascular disease (CVD) medical expenditures. Diastolic blood pressure (BP) was modestly but significantly lowered when almonds were consumed at >42.5 g/day or for >6 weeks. Recent RCTs suggest possible emerging health benefits for almonds such as enhanced cognitive performance, improved heart rate variability under mental stress, and reduced rate of facial skin aging from exposure to ultraviolet (UV) B radiation. Eight RCTs show that almonds can support colonic microbiota health by promoting microflora richness and diversity, increasing the ratio of symbiotic to pathogenic microflora, and concentrations of health-promoting colonic bioactives. Almonds are a premier healthy snack for precision nutrition diet plans.
Collapse
Affiliation(s)
- Mark L Dreher
- Nutrition Science Solutions, LLC, 900 S Rainbow Ranch Rd, Wimberley, TX 78676, USA
| |
Collapse
|
7
|
Deficit Irrigation as a Suitable Strategy to Enhance the Nutritional Composition of HydroSOS Almonds. WATER 2020. [DOI: 10.3390/w12123336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mediterranean region is one of the most water-scarce areas worldwide and is considered a climate-change hotspot. To assure the viability and competitiveness of irrigated agriculture, it is vital to implement strategies that can maximize water saving without compromising yield. Deficit irrigation (DI) for cultivating drought-tolerant species such as almond (Prunus dulcis (Mill.) D.A. Webb) can help in achieving this goal, while at the same time improving fruit chemical composition. This work evaluated the effect of DI techniques and cultivars on the chemical composition of almonds (cvs. Marta, Guara, and Lauranne) in order to elucidate the most suitable irrigation dose under water-scarcity scenarios. Three irrigation regimes were imposed: a control treatment (FI), which was fully irrigated, receiving 100% of the irrigation requirement (IR), and two sustained-deficit irrigation (SDI) strategies that received 75% (SDI75) and 65% (SDI65) of IR. Significant differences among cultivars and irrigation treatments were observed for antioxidant activity and organic acid, sugar, and fatty acid content, which were increased by the SDI strategies. In addition, highly significant correlations were found between leaf-water potential and components such as fumaric acid, sugars, and fatty acids. In terms of the cultivars, cv. Marta showed the highest antioxidant activity, cv. Guara was the richest in organic acids, and cv. Lauranne had the highest fatty acid content. Consequently, SDI strategies improved almond quality parameters related to their nutritional and sensory composition, with significant water savings (reductions of 25–35%) and without important yield loss.
Collapse
|