1
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|
2
|
Bénard A, Podolska MJ, Czubayko F, Kutschick I, Klösch B, Jacobsen A, Naschberger E, Brunner M, Krautz C, Trufa DI, Sirbu H, Lang R, Grützmann R, Weber GF. Pleural Resident Macrophages and Pleural IRA B Cells Promote Efficient Immunity Against Pneumonia by Inducing Early Pleural Space Inflammation. Front Immunol 2022; 13:821480. [PMID: 35493510 PMCID: PMC9047739 DOI: 10.3389/fimmu.2022.821480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Airway infection is a major cause of mortality worldwide. The identification of new mechanisms aiding in effective host immune response is therefore required. Here, we show that the specific depletion of the pleural immune cell compartment during bacterial pneumonia resulted in a reduced pulmonary immune response and increased mortality in mice. Bacterial airway infection provoked early pleural space (PS) inflammation characterized by innate response activator (IRA) B cell development and pleural large resident macrophage (LRM) necroptosis, the repopulation of LRMs being driven by cellular proliferation in situ. Necroptotic LRMs amplified PS inflammation by stimulating pleural Mincle-expressing macrophages whereas IRA B cells contributed partially to GM-CSF-induced PS inflammation. Upon pulmonary infection, the induction of PS inflammation resulted in reduced bacterial burden whereas the specific depletion of pleural resident macrophages led to increased mortality and bacterial burden and reduced pulmonary immunity. Moreover, mice in which B cells were unable to produce GM-CSF exhibited reduced CD103+ dendritic cells and reduced CD4+ T cell numbers in the draining lymph node. Altogether, our results describe a previously unrecognized mechanism of pleural space inflammation necessary for effective protection against bacterial airway infection.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Malgorzata J. Podolska
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Czubayko
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Krautz
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Georg F. Weber,
| |
Collapse
|
3
|
Deniset JF, Belke D, Lee WY, Jorch SK, Deppermann C, Hassanabad AF, Turnbull JD, Teng G, Rozich I, Hudspeth K, Kanno Y, Brooks SR, Hadjantonakis AK, O'Shea JJ, Weber GF, Fedak PWM, Kubes P. Gata6 + Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity 2019; 51:131-140.e5. [PMID: 31315031 DOI: 10.1016/j.immuni.2019.06.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.
Collapse
Affiliation(s)
- Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Darrell Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, AB, T2N 1N4, Canada
| | - Woo-Yong Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Selina K Jorch
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Carsten Deppermann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, AB, T2N 1N4, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, AB, T2N 1N4, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, AB, T2N 1N4, Canada
| | - Isaiah Rozich
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Rockville, MD 20892, USA
| | - Kelly Hudspeth
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Rockville, MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Rockville, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, Rockville, MD, 20892, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Rockville, MD 20892, USA
| | - Georg F Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg, 91054, Germany
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, AB, T2N 1N4, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Abstract
Myeloid cell recruitment to sites of infection and injury started out as a simple model that has been referred to as the universal concept of leukocyte recruitment. However, as we gain more insight into the different mechanisms, it is becoming clear that each organ and perhaps even each cell has its own unique mechanism of recruitment. Moreover, as the ability to visualize specific cell types in specific organs becomes more accessible, it is also becoming clear that there are resident populations of leukocytes, some within the tissues and others attached to the vasculature of tissues, the latter poised to affect the local environment. In this review, we will first highlight the imaging approaches that have allowed us to gain spectacular insight into locale and function of specific cell types, and then we will discuss what we have learned from this approach as far as myeloid cells are concerned. We will also highlight some of the gaps in our knowledge, which exist almost certainly because of the challenges of being able to visualize certain compartments of the body.
Collapse
|