1
|
Li J, Liu K, Lyu S, Jing G, Dai B, Dhand R, Lin HL, Pelosi P, Berlinski A, Rello J, Torres A, Luyt CE, Michotte JB, Lu Q, Reychler G, Vecellio L, de Andrade AD, Rouby JJ, Fink JB, Ehrmann S. Aerosol therapy in adult critically ill patients: a consensus statement regarding aerosol administration strategies during various modes of respiratory support. Ann Intensive Care 2023; 13:63. [PMID: 37436585 DOI: 10.1186/s13613-023-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Clinical practice of aerosol delivery in conjunction with respiratory support devices for critically ill adult patients remains a topic of controversy due to the complexity of the clinical scenarios and limited clinical evidence. OBJECTIVES To reach a consensus for guiding the clinical practice of aerosol delivery in patients receiving respiratory support (invasive and noninvasive) and identifying areas for future research. METHODS A modified Delphi method was adopted to achieve a consensus on technical aspects of aerosol delivery for adult critically ill patients receiving various forms of respiratory support, including mechanical ventilation, noninvasive ventilation, and high-flow nasal cannula. A thorough search and review of the literature were conducted, and 17 international participants with considerable research involvement and publications on aerosol therapy, comprised a multi-professional panel that evaluated the evidence, reviewed, revised, and voted on recommendations to establish this consensus. RESULTS We present a comprehensive document with 20 statements, reviewing the evidence, efficacy, and safety of delivering inhaled agents to adults needing respiratory support, and providing guidance for healthcare workers. Most recommendations were based on in-vitro or experimental studies (low-level evidence), emphasizing the need for randomized clinical trials. The panel reached a consensus after 3 rounds anonymous questionnaires and 2 online meetings. CONCLUSIONS We offer a multinational expert consensus that provides guidance on the optimal aerosol delivery techniques for patients receiving respiratory support in various real-world clinical scenarios.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA.
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Lyu
- Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Guoqiang Jing
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Ariel Berlinski
- Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Arkansas for Medical Sciences, and Pediatric Aerosol Research Laboratory at Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research in the ICU, Anaesthesia Department, CHU Nimes, Université de Nimes-Montpellier, Nimes, France
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, University of Barcelona, IDIBAPS CIBERES, Icrea, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, and INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland
| | - Qin Lu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, and Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL and Dermatologie, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Jean-Jacques Rouby
- Research Department DMU DREAM and Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Sorbonne University of Paris, Paris, France
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA
- Chief Science Officer, Aerogen Pharma Corp, San Mateo, CA, USA
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, and INSERM, Centre d'étude des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
2
|
Montigaud Y, Georges Q, Leclerc L, Clotagatide A, Louf-Durier A, Pourchez J, Prévôt N, Périnel-Ragey S. Impact of gas humidification and nebulizer position under invasive ventilation: preclinical comparative study of regional aerosol deposition. Sci Rep 2023; 13:11056. [PMID: 37422519 PMCID: PMC10329710 DOI: 10.1038/s41598-023-38281-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Successful aerosol therapy in mechanically ventilated patients depends on multiple factors. Among these, position of nebulizer in ventilator circuit and humidification of inhaled gases can strongly influence the amount of drug deposited in airways. Indeed, the main objective was to preclinically evaluate impact of gas humidification and nebulizer position during invasive mechanical ventilation on whole lung and regional aerosol deposition and losses. Ex vivo porcine respiratory tracts were ventilated in controlled volumetric mode. Two conditions of relative humidity and temperature of inhaled gases were investigated. For each condition, four different positions of vibrating mesh nebulizer were studied: (i) next to the ventilator, (ii) right before humidifier, (iii) 15 cm to the Y-piece adapter and (iv) right after the Y-piece. Aerosol size distribution were calculated using cascade impactor. Nebulized dose, lung regional deposition and losses were assessed by scintigraphy using 99mtechnetium-labeled diethylene-triamine-penta-acetic acid. Mean nebulized dose was 95% ± 6%. For dry conditions, the mean respiratory tract deposited fractions reached 18% (± 4%) next to ventilator and 53% (± 4%) for proximal position. For humidified conditions, it reached 25% (± 3%) prior humidifier, 57% (± 8%) before Y-piece and 43% (± 11%) after this latter. Optimal nebulizer position is proximal before the Y-piece adapter showing a more than two-fold higher lung dose than positions next to the ventilator. Dry conditions are more likely to cause peripheral deposition of aerosols in the lungs. But gas humidification appears hard to interrupt efficiently and safely in clinical use. Considering the impact of optimized positioning, this study argues to maintain humidification.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Quentin Georges
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | | | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Nathalie Prévôt
- Nuclear Medicine Unit, CHU Saint-Etienne, 42055, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France
| | - Sophie Périnel-Ragey
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France.
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
- Intensive Care Unit G, Saint Etienne University Hospital, North Hospital, UMR INSERM U1059, Avenue Albert Raymond, 42270, Saint Priest en Jarez, France.
| |
Collapse
|
3
|
Tan W, Dai B, Lu CL, Hou HJ, Zhao HW, Wang W, Kang J. The Effect of Different Interfaces on the Aerosol Delivery with Vibrating Mesh Nebulizer During Noninvasive Positive Pressure Ventilation. J Aerosol Med Pulm Drug Deliv 2021; 34:366-373. [PMID: 33848443 DOI: 10.1089/jamp.2020.1623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The effect of different interfaces on the aerosol delivery with vibrating mesh nebulizer during noninvasive positive pressure ventilation (NIV) is not clear. Materials and Methods: Noninvasive ventilator and four interfaces were connected to IngMar ASL 5000 lung simulator. Meanwhile, the vibrating mesh nebulizer was connected to a ventilator circuit to simulate the nebulization during noninvasive ventilation. The nebulizer position was placed at proximal position (near the mask) and distal position (15 cm away from the mask); the inspiratory positive airway pressure (IPAP) and the expiratory positive airway pressure (EPAP) were set to 16/4, 16/8, 20/4, and 20/8 cmH2O, respectively. The aerosol was collected through a disposable filter placed between the simulated lung and the mask, after which the aerosol delivery was calculated. Meanwhile, we recorded the inspiratory tidal volume and the mean inspiratory flow. Results: The aerosol delivery varied between 1.7% ± 0.0% and 21.1% ± 1.1%. Only when EPAP was set to 4 cmH2O, the statistical difference in aerosol delivery was observed between the two types of interface, and between different leak port locations (p < 0.01; p = 0.04, respectively). When IPAP/EPAP was set to 16/4 and 20/4 cmH2O, respectively, at different nebulizer positions, there was a statistical difference between the interface with the same type but different leak port locations and between the interface with same leak port location but different inner volumes (all p < 0.01). Also, there was a correlation between the aerosol delivery and interface volume (p < 0.01, R2 = 0.55; p < 0.01, R2 = 0.51, respectively), and between aerosol delivery and the intentional leak of interfaces (p < 0.01, R2 = 0.59; p < 0.01, R2 = 0.48, respectively). When EPAP was set to 4 and 8 cmH2O, respectively, the aerosol delivery of nebulizer distal position was significantly higher than that of proximal position (12.2% ± 5.0% vs. 9.1% ± 4.1%, p < 0.05; 2.5% ± 0. 5% vs. 2.1% ± 0.3%, p < 0.01, respectively). Conclusion: Interfaces have a significant effect on aerosol delivery during NIV. The interfaces with different inner volumes, intentional leak, and leak port location may all have an effect on aerosol delivery. The addition of a 15 cm tube between the nebulizer and the mask significantly increases the aerosol delivery.
Collapse
Affiliation(s)
- Wei Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chang-Ling Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hai-Jia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong-Wen Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Avdeev SN, Nuralieva GS, Soe AK, Gainitdinova VV, Fink JB. Comparison of Vibrating Mesh and Jet Nebulizers During Noninvasive Ventilation in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J Aerosol Med Pulm Drug Deliv 2021; 34:358-365. [PMID: 33848441 DOI: 10.1089/jamp.2020.1665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Advances in aerosol technology have improved drug delivery efficiency during noninvasive ventilation (NIV). Clinical evaluation of the efficacy of aerosol therapy during NIV in the treatment of acute exacerbation of chronic obstructive pulmonary disease (COPD) is very limited. The aim of our study was to compare the efficacy of bronchodilators administered through a vibrating mesh nebulizer (VMN) and jet nebulizer (JN) during NIV in patients with acute exacerbation of COPD. Methods: Prospective randomized cross-over study included 30 patients treated with NIV for acute exacerbation of COPD in an acute care hospital. Patients were consented and enrolled after stabilization of acute exacerbation (3-5 days after admission). Subjects were randomly assigned into two treatment arms receiving salbutamol (2.5 mg): with VMN (Aerogen Solo) and JN (Sidestream) positioned between the leak port and the nonvented oronasal mask during bilevel ventilation with a single-limb circuit. Measurements (clinical data, pulmonary function tests [PFTs], and arterial blood gases) were performed at baseline, 1, and 2 hours after treatment. Results: All measured PFT parameters significantly increased in both groups, but numerically results were better after inhalation with VMN than with JN: for forced expiratory volume in 1 second (FEV1) (mean increase from baseline to 120 minutes-165 ± 64 mL vs. 116 ± 46 mL, p = 0.001) and for forced vital capacity (FVC) (mean increase-394 ± 154 mL vs. 123 ± 57 mL, p < 0.001). There was also a statistically significant reduction in respiratory rate and in Borg dyspnea score after therapy with VMN in comparison with the conventional JN. In both groups, there were improvements in PaCO2, but with VMN these changes were significantly higher. Conclusion: Bronchodilator administration in patients with acute exacerbation of COPD during NIV with VMN resulted in clinically significant improvements in FVC and in Borg dyspnea score. Additional studies required to determine the impact on clinical outcomes.
Collapse
Affiliation(s)
- Sergey N Avdeev
- Sechenov First Moscow State Medical University, Healthcare Ministry of Russia, Moscow, Russia.,Federal Pulmonology Research Institute, Moscow, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Galia S Nuralieva
- Sechenov First Moscow State Medical University, Healthcare Ministry of Russia, Moscow, Russia.,Federal Pulmonology Research Institute, Moscow, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Aung Kyaw Soe
- Federal Pulmonology Research Institute, Moscow, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Viliya V Gainitdinova
- Sechenov First Moscow State Medical University, Healthcare Ministry of Russia, Moscow, Russia
| | - James B Fink
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Aerogen Pharma Corp., San Mateo, California, USA
| |
Collapse
|
5
|
Haw A, McPeck M, Cuccia AD, Smaldone GC. Face Mask Leak Determines Aerosol Delivery in Noninvasive Ventilation. Respir Care 2021; 66:95-103. [PMID: 32934098 PMCID: PMC9993822 DOI: 10.4187/respcare.07915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Aerosol transport during noninvasive ventilation follows the flow of pressurized gas through the noninvasive ventilation circuit, vented via leak port and face mask, and inhaled by the patient. Recommendations for nebulizer placement are based on in vitro models that have focused primarily on aerosol losses via the leak port; face mask leaks have been avoided. This study tested aerosol delivery in the setting of controlled face mask leak. METHODS Three nebulizer technologies were studied on a bench model using a lung simulator with a face mask placed onto a manikin head. Radiolabeled aerosol delivery (ie, inhaled mass) was determined by mass balance using filters and a gamma camera that tested the effects of nebulizer location and face mask leak. Low (15-20 L/min) and high (55-60 L/min) mask leaks were used to mimic realistic clinical conditions. RESULTS Inhaled mass (% nebulizer charge) was a function of nebulizer technology (with the nebulizer at ventilator outlet position: Aerogen 22.8%, InspiRx 11.1%, and Hudson 8.1%; P = .001). The location of the nebulizer before or after the leak port was not important (P = 0.13 at low leak and P = 0.38 at high leak). Aerosol delivery was minimal with high mask leak (inhaled mass 1.5-7.0%). Aerosol losses at the leak port at low mask leak were 28-36% versus 9-24% at high mask leak. Aerosol losses via the mask leak were 16-20% at low mask leak versus 46-72% at high mask leak. Furthermore, high face mask leak led to significant deposition on the mask and face (eg, up to 50% of the nebulizer charge with the Aerogen mask). CONCLUSIONS During noninvasive ventilation, nebulizer placement at the ventilator outlet, which is a more practical position, is effective and minimizes deposition on face and mask. Aerosol therapy should be avoided when there is high face mask leak.
Collapse
Affiliation(s)
- Alexandra Haw
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York.
| | - Michael McPeck
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Ann D Cuccia
- Respiratory Care Program, School of Health Technology and Management, Stony Brook University, Stony Brook, New York
| | - Gerald C Smaldone
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| |
Collapse
|
6
|
Reychler G, Michotte JB. Development challenges and opportunities in aerosol drug delivery systems in non-invasive ventilation in adults. Expert Opin Drug Deliv 2019; 16:153-162. [DOI: 10.1080/17425247.2019.1572111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Jean-Bernard Michotte
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Filière Physiothérapie, School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| |
Collapse
|