1
|
Ahn HS, Lee SY, Kang MJ, Hong SB, Song JW, Do KH, Yeom J, Yu J, Oh Y, Hong JY, Chung EH, Kim K, Hong SJ. Polyhexamethylene guanidine aerosol causes irreversible changes in blood proteins that associated with the severity of lung injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135359. [PMID: 39126856 DOI: 10.1016/j.jhazmat.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is a positively charged polymer used as a disinfectant that kills microbes but can cause pulmonary fibrosis if inhaled. After the long-term risks were confirmed in South Korea, it became crucial to measure toxicity through diverse surrogate biomarkers, not only proteins, especially after these hazardous chemicals had cleared from the body. These biomarkers, identified by their biological functions rather than simple numerical calculations, effectively explained the imbalance of pulmonary surfactant caused by fibrosis from PHMG exposure. These long-term studies on children exposed to PHMG has shown that blood protein indicators, primarily related to apolipoproteins and extracellular matrix, can distinguish the degree of exposure to humidifier disinfectants (HDs). We defined the extreme gradient boosting models and computed reflection scores based on just ten selected proteins, which were also verified in adult women exposed to HD. The reflection scores successfully discriminated between the HD-exposed and unexposed groups in both children and adult females (AUROC: 0.957 and 0.974, respectively) and had a strong negative correlation with lung function indicators. Even after an average of more than 10 years, blood is still considered a meaningful specimen for assessing the impact of environmental exposure to toxic substances, with proteins providing in identifying the pathological severity of such conditions.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Mi-Jin Kang
- Humidifier Disinfectant Health Center, Asan Medical Center, Seoul, South Korea.
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kyung Hyun Do
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeounghun Yeom
- Prometabio Research Institute, prometabio co., ltd., Gyeonggi-do, South Korea.
| | - Jiyoung Yu
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - Yumi Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeong Yeon Hong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Song JH, Ahn J, Park MY, Park J, Lee YM, Myong JP, Koo JW, Lee J. Health Effects Associated With Humidifier Disinfectant Use: A Systematic Review for Exploration. J Korean Med Sci 2022; 37:e257. [PMID: 35996934 PMCID: PMC9424740 DOI: 10.3346/jkms.2022.37.e257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been 10 years since the outbreak of lung disease caused by humidifier disinfectants in Korea, but the health effects have not yet been summarized. Therefore, this study aims to systematically examine the health effects of humidifier disinfectants that have been discovered so far. METHODS All literature with humidifier disinfectants and their representative components as the main words were collected based on the web, including PubMed, Research Information Sharing Service, and government publication reports. A total of 902 studies were searched, of which 196 were selected. They were divided into four groups: published human studies (group 1), published animal and cytotoxicology studies (group 2), technical reports (group 3), and gray literature (group 4). RESULTS Out of the 196 studies, 97 (49.5%) were published in peer-reviewed journals as original research. Group 1 consisted of 49 articles (50.5%), while group 2 consisted of 48 articles (49.5%). Overall, respiratory diseases such as humidifier disinfectant associated lung injury, interstitial lung disease, and asthma have a clear correlation, but other effects such as liver, heart, thymus, thyroid, fetal growth, metabolic abnormalities, and eyes are observed in toxicological experimental studies, but have not yet been identified in epidemiologic studies. CONCLUSION The current level of evidence does not completely rule out the effects of humidifier disinfectants on extrapulmonary disease. Based on the toxicological evidence so far, it is required to monitor the population of humidifier disinfectant exposure continuously to see if similar damage occurs.
Collapse
Affiliation(s)
- Ji-Hun Song
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonho Ahn
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Young Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaeyoung Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Wan Koo
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
3
|
Kim D, Shin Y, Kim EH, Lee Y, Kim S, Kim HS, Kim HC, Leem JH, Kim HR, Bae ON. Functional and dynamic mitochondrial damage by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture in brain endothelial cell lines and rat cerebrovascular endothelium. Toxicol Lett 2022; 366:45-57. [PMID: 35803525 DOI: 10.1016/j.toxlet.2022.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT, chloromethylisothiazolinone) and 2-methyl-4-isothiazolin-3-one (MIT, methylisothiazolinone) is a commonly used biocide in consumer products. Despite the health issues related to its usage in cosmetics and humidifier disinfectants (HD), understanding its adverse outcome is still limited. Using in vitro cell lines and ex vivo rat models, we examined the effects of CMIT/MIT on the cellular redox homeostasis and energy metabolism in the brain microvascular endothelium, a highly restrictive interface between the bloodstream and brain. In murine bEND.3 and human hCMEC/D3, CMIT/MIT significantly amplified the mitochondrial-derived oxidative stress causing disruption of the mitochondrial membrane potential and oxidative phosphorylation at a sub-lethal concentration (1 μg/mL) or treatment duration (1 h). In addition, CMIT/MIT significantly increased a dynamic imbalance between mitochondrial fission and fusion, and endogenous pathological stressors significantly potentiated the CMIT/MIT-induced endothelial dysfunction. Notably, in the brain endothelium isolated from intravenously CMIT/MIT-administered rats, we observed significant mitochondrial damage and decreased tight junction protein. Taken together, we report that CMIT/MIT significantly impaired mitochondrial function and dynamics resulting in endothelial barrier dysfunction, giving an insight into the role of mitochondrial damage in CMIT/MIT-associated systemic health effects.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Youngmee Lee
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Seongmi Kim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Jong-Han Leem
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
4
|
Jaitpal S, Chavva SR, Mabbott S. 3D Printed SERS-Active Thin-Film Substrates Used to Quantify Levels of the Genotoxic Isothiazolinone. ACS OMEGA 2022; 7:2850-2860. [PMID: 35097281 PMCID: PMC8793047 DOI: 10.1021/acsomega.1c05707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Several reports present methods to fabricate thin-film substrates capable of surface-enhanced Raman scattering (SERS). Substrates synthesized by displacing silver onto copper using facile synthesis methods such as galvanic displacement can generate high levels of SERS enhancement rivaling commercially available substrates manufactured by lithographic methods. Here, we describe the optimization of a novel set of SERS-active thin-film substrates synthesized via the electroless displacement of Ag onto the surface of three-dimensional (3D) printed disks composed of the copper/polymer (PLA) composite filament. The effect of AgNO3 concentration on the deposition, morphology, and overall SERS activity of the substrates has been carefully studied. Two commonly used Raman reporters, 4-mercaptobenzoic acid (MBA) and malachite green isothiocyanate (MGITC), were used to measure the SERS output of the substrates. Good SERS signal reproducibility (RSD ∼16.8%) was measured across the surface of replicate substrates and high-sensitivity detection of MBA was achieved (10-12 M). To test the real-world application of our substrates, we opted to detect 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), which is a genotoxic, biocide common in many household products, known to leach into water supplies. Our newly developed SERS-active substrates could detect CMIT down to 10 ppm when spiked in simulated lake water samples, which is well within current agency standards.
Collapse
Affiliation(s)
- Siddhant Jaitpal
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Center
for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, College Station, Texas 77840-3006, United States
| | - Suhash Reddy Chavva
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Center
for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, College Station, Texas 77840-3006, United States
| | - Samuel Mabbott
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Center
for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, College Station, Texas 77840-3006, United States
| |
Collapse
|
5
|
Assessment of agonistic and antagonistic properties of humidifier disinfectants to the estrogenic and androgenic receptors by transactivation assay. Toxicol Res 2021; 38:99-109. [PMID: 35070945 PMCID: PMC8748560 DOI: 10.1007/s43188-021-00111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Before being recalled and banned from the Korean market, humidifier disinfectants (HDs) were added to the humidifier water tank to prevent microbial growth. The known HDs active ingredients included the are oligo(2-(2-ethoxy)ethoxyethyl guanidine (PGH), polyhexamethylene guanidine (PHMG), a mixture of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT), didecyldimethyl ammonium chloride (DDAC), Sodium dichloroisocyanurate (NaDCC), and alkyldimethylbenzyl ammonium chloride (BAC). Previous epidemiological studies have suggested that PHMG induces fatal lung disease in pregnant, post-partum women, and young children. In an animal study, a mixture of DDAC and BAC exhibited decreased fertility and fecundity; increased time to first litter, longer pregnancy intervals, fewer pups per litter, and fewer pregnancies. In this study, endocrine-disrupting effects of HDs were investigated using estrogen receptor (ER) and androgen receptor (AR) transactivation assay based on OECD Test guidelines. Unexpectedly, unlike the previously reported reproductive toxicity data, in the present study, HDs did not show ER and AR transcriptional activation agonist and/or antagonist effects. However, it is difficult to conclude that HDs has no endocrine disruption effects, and further research on the effects of HDs mixtures, and in vivo tests including Uterotrophic bioassay and Hershberger bioassay would be necessary.
Collapse
|
6
|
Koh EJ, Yu SY, Kim SH, Lee JS, Hwang SY. Prenatal Exposure to Heavy Metals Affects Gestational Age by Altering DNA Methylation Patterns. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2871. [PMID: 34835636 PMCID: PMC8618483 DOI: 10.3390/nano11112871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Environmental exposure is known to have toxic effects. Maternal environmental exposure not only affects mothers but also their fetuses in utero, which may interrupt their early development. Preterm birth, one of the outcomes of prenatal exposure, is a significant factor in lifelong health risks. To understand the effects of prenatal exposome on preterm birth, we studied the association between maternal and prenatal heavy metal exposure and gestational age, using resources from the MOthers' and Children's Environmental Health (MOCEH) study in South Korea. Additionally, a methylation assay was performed to analyze epigenetic mediation using genomic DNA derived from the cord blood of 384 participants in the MOCEH study. The results suggest that maternal cadmium exposure is associated with a decrease in gestational age through an alteration in DNA methylation at a specific CpG site, cg21010642. The CpG site was annotated to a gene involved in early embryonic development. Therefore, irregular methylation patterns at this site may contribute to premature birth by mediating irregular biological mechanisms.
Collapse
Affiliation(s)
- Eun Jung Koh
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (E.J.K.); (S.H.K.)
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Korea; (S.Y.Y.); (J.S.L.)
- Department of Applied Artificial Intelligence, Hanyang University, Sangnok-gu, Ansan 15588, Korea
| |
Collapse
|
7
|
Lee H, Park J, Park K. Fibrosis as a result of polyhexamethylene guanide exposure in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Environ Anal Health Toxicol 2021; 36:e2021009-0. [PMID: 34130374 PMCID: PMC8421752 DOI: 10.5620/eaht.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Previous research studies on the toxicity of polyhexamethylene guanidine (PHMG) as a humidifier disinfectant majorly focused on lung fibrosis. Considering that disinfectants in humidifiers are released in aerosol form, the eyes are directly exposed and highly vulnerable to the detrimental effects of the PHMG. Therefore, in the present study we investigated the adverse effects of PHMG on the eyes; considering fibrosis as a manifestation of PHMG toxicity in the eye, we evaluated fibrosis-related biomarkers in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, fibrosis-related biomarkers were evaluated through polymerase chain reaction (PCR) and immunoblotting, and oxidative stress was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Polyhexamethylene guanidine showed cytotoxicity in a time and concentration-dependent manner. Fibrosis related biomarkers including transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and hemeoxygenase-1 (HO-1) increased in both gene and protein levels. Oxidative stress also increased in the PHMG-treated cultured cells. The findings of the present study suggest that PHMG could cause toxicity in the eye as manifested by fibrosis.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| |
Collapse
|
8
|
Different Characteristics of Childhood Asthma Related to Polyhexamethylene Guanidine Hydrochloride (PHMG) Exposure. Ann Am Thorac Soc 2021; 18:1523-1532. [PMID: 33561373 DOI: 10.1513/annalsats.202007-807oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Exposure to humidifier disinfectants (HDs) can increase the risk of asthma but the characteristics of HD-related asthma are currently unclear. Polyhexamethylene guanidine hydrochloride (PHMG)-containing HD was the most commonly used and the most frequently associated with HD-associated lung injury. OBJECTIVES To investigate the characteristics of PHMG-induced asthma. METHODS This general population-based birth cohort study utilized data from the Panel Study of Korean Children from 2008 (n = 846). Spirometry, bronchial provocation tests, detailed history recording, and physical examinations were performed on seven-year-old patients (n=362). Exploratory analysis of plasma proteomics was performed. RESULTS Compared with healthy control, FEV1 was the lowest in PHMG-exposed asthma group. (z score = -0.806; 95% CI, -1.492 to -0.119) The positive rate of bronchial hyperresponsiveness was lower in children with PHMG-exposed asthma compared to children with asthma without HD exposure (13.3% vs. 47.4%). Long-term exposure to low-intensity PHMG before age three was associated with asthma symptoms. Periostin was higher in asthma without HD exposure compared to the healthy control. The inducible T cell costimulator ligand and hepatocyte growth factor activator were lower in PHMG-exposed asthma compared to asthma without exposure. Hepatocyte growth factor activator a positive correlation with FVC (z-score) in asthma with PHMG exposure (r=0.78, P<0.01). CONCLUSIONS The asthma associated with low intensity exposure to PHMG is characterized by lower lung function, lower positive rates of bronchial hyperresponsiveness, and varied distributions of plasma proteins. These findings suggest that asthma related to PHMG exposure may constitute a different mechanism of asthma pathophysiology.
Collapse
|
9
|
Lee E, Lee SY, Hong SJ. The past, present, and future of humidifier disinfectant-associated interstitial lung diseases in children. Clin Exp Pediatr 2020; 63:251-258. [PMID: 32024320 PMCID: PMC7374007 DOI: 10.3345/cep.2019.01326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Exposure to environmental factors can cause interstitial lung diseases (ILDs); however, such types of ILDs are rare. From 2007 to 2011, an ILD epidemic occurred in South Korea owing to inhalational exposure to toxic chemicals in humidifier disinfectants (HDs). HD-associated ILDs (HD-ILDs) are characterized by rapidly progressing respiratory failure with pulmonary fibrosis and a high mortality rate of 43.8%-58.0%. Although 18.1%-31.1% of the general population used HDs, only a small proportion of HD users were diagnosed with HD-ILDs. This finding suggests that investigation of the pathophysiologies underlying HD-ILDs is needed in addition to the identification of susceptibility to HD-ILDs. Further, there have been several concerns regarding the diverse health effects of exposure to toxic chemicals in HDs, including those that have not been identified, and long-term prognoses in terms of pulmonary function and residual pulmonary lesions observed on follow-up chest images. In this review, we summarize the clinical features, pathologic findings, and changes in radiologic findings over time in patients with HD-ILDs and the results of previous experimental research on the mechanisms underlying the effects of toxic chemicals in HDs. Studies are currently underway to identify the pathophysiologies of HD-ILDs and possible health effects of exposure to HDs along with the development of targeted therapeutic strategies. The experience of identification of HD-ILDs has encouraged stricter control of safe chemicals in everyday life.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|