1
|
van den Bosch WB, Ruijgrok EJ, Tousi NM, Tiddens HAWM, Janssens HM. Small Airways Disease Affects Aerosol Deposition in Children with Severe Asthma: A Functional Respiratory Imaging Study. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39230427 DOI: 10.1089/jamp.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Background: Small airways disease (SAD) in severe asthma (SA) is associated with high disease burden. Effective treatment of SAD could improve disease control. Reduced end-expiratory flows (forced expiratory flow [FEF]25-75 and FEF75) are considered sensitive indicators of SAD. Inhaled medication should be delivered to the smaller peripheral airways to treat SAD effectively. Aerosol deposition is affected by structural airway changes. Little is known about the effect of SAD on aerosol delivery to the smaller peripheral airways. Functional respiratory imaging (FRI) is a validated technique using 3D reconstructed chest computed tomography (CT) and computational fluid dynamics to predict aerosol deposition in the airways. Aim: This study aims to compare central and peripheral (= small airways) deposition between children with SA and SAD and children with SA without SAD, with different inhaler devices and inhalation profiles. Methods: FRI was used to predict the deposition of beclomethasone/formoterol dry powder inhaler (DPI), beclomethasone/formoterol pressurized metered dose inhaler with valved holding chamber (pMDI/VHC), and salbutamol pMDI/VHC for different device-specific inhalation profiles in chest-CT of 20 children with SA (10 with and 10 without SAD). SAD was defined as FEF25-75 and FEF75 z-score < -1.645 and forced vital capacity (FVC) z-score > -1.645. No SAD was defined as forced expiratory volume (FEV)1, FEF25-75, FEF75, and FVC z-score > -1.645. The intrathoracic, central, and peripheral airways depositions were determined. Primary outcome was difference in central-to-peripheral (C:P) deposition ratio between children with SAD and without SAD. Results: Central deposition was significantly higher (∼3.5%) and peripheral deposition was lower (2.9%) for all inhaler devices and inhalation profiles in children with SAD compared with children without SAD. As a result C:P ratios were significantly higher for all inhaler devices and inhalation profiles, except for beclomethasone administered through DPI (p = .073), in children with SAD compared with children without SAD. Conclusion: Children with SA and SAD have higher C:P ratios, that is, higher central and lower peripheral aerosol deposition, than children without SAD. The intrathoracic, central, and peripheral deposition of beclomethasone/formoterol using DPI was lower than using pMDI/VHC.
Collapse
Affiliation(s)
- Wytse B van den Bosch
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth J Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Harm A W M Tiddens
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Thirona BV, Nijmegen, The Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Weers JG. Design of dry powder inhalers to improve patient outcomes: it's not just about the device. Expert Opin Drug Deliv 2024; 21:365-380. [PMID: 38630860 DOI: 10.1080/17425247.2024.2343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Up to 50% of asthma/COPD patients make critical errors in dose preparation and dose inhalation with current marketed DPIs which negatively impact clinical outcomes. Others fail to adhere to their chronic treatment regimen. AREAS COVERED For this review, we describe how a human-factors approach to design of a dry powder inhaler can be used to improve usability, proficiency, and functionality of DPIs, while effectively mitigating critical errors associated with DPIs. The review highlights the critical importance of utilizing improved formulations with monomodal aerodynamic particle size distributions to reduce variability associated with oropharyngeal filtering of particles, flow rate dependence, and co-formulation effects. EXPERT OPINION Much of the variability in dose delivery with DPIs is associated with limitations of the bimodal APSDs inherent in current lactose blend formulations. Evidence supports that improved lung targeting and dose consistency can be achieved with drug-device combination products comprising spray-dried powders. Unfortunately, no data exists to assess whether these advances observed in in vitro and in vivo dose delivery studies will translate into improved clinical outcomes. Given the significant percentage of patients that receive suboptimal drug delivery with current DPIs it would behoove the industry to assess the efficacy of new approaches.
Collapse
|
3
|
Braido F, Arnaboldi E, Barile S, Cavalieri L, Ingrassia E, Russo M, Piraino A. BDP/FF NEXThaler to Improve Asthma Control Status in the Real World: The NEWTON Study. J Asthma Allergy 2023; 16:1177-1186. [PMID: 37904878 PMCID: PMC10613424 DOI: 10.2147/jaa.s422832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
In this article, we discuss the importance of real-world data in the treatment of patients with asthma and specifically the role of maintenance and reliever therapy (MART) with beclometasone dipropionate (BDP)/formoterol fumarate dihydrate (FF) delivered through a dry-powder inhaler (DPI) that contains an extrafine formulation. We also present the design of the NEWTON study. This multinational, multicenter, prospective, observational study will evaluate the real-world use of extrafine BDP/FF via a DPI as maintenance therapy and MART in patients with moderate to severe asthma. The study's primary outcome will be the proportion of patients improving their asthma control. Digitally collected patient-reported outcomes, such as the 5-item Asthma Control Questionnaire, the EuroQol 5-dimension 5-level, and the Test of the Adherence to Inhalers, will be used to assess the patient's asthma control, quality of life, and treatment adherence. Moreover, a new patient-reported outcome, the "Speed of change in health feeling" questionnaire, will be validated in a subgroup of patients. Overall, the results of this study will provide a real-life assessment of patients who perceived clinical benefits in a large cohort of asthmatics in Europe treated as per current clinical practice.
Collapse
Affiliation(s)
- Fulvio Braido
- Respiratory Unit for Continuity of Care, IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Enrico Arnaboldi
- Respiratory Unit for Continuity of Care, IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | | | | | | | - Maria Russo
- Respiratory Unit for Continuity of Care, IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | | |
Collapse
|
4
|
Feedback systems in multi-dose dry powder inhalers. Postepy Dermatol Alergol 2023; 40:16-21. [PMID: 36909914 PMCID: PMC9993196 DOI: 10.5114/ada.2022.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dry powder inhalers (DPIs) are a large, highly diverse group of inhalation devices. DPIs differentiate the process of measuring the dose of the drug and preparing the inhaler for use, but also the way of transmitting and the scope of feedback on the inhalation process that the user receives. The functioning of simple and technologically advanced systems of feedback on the inhalation process in the most commonly used multi-dose DPIs is discussed. All these DPIs have a dose counter. Only three DPIs - Novolizer®, Genuair® and NEXThaler® provide feedback to the patient in the form of auditory and visual signals confirming the correctness of the inhalation performed. This is important for the correct use of the inhaler, and thus for obtaining the expected therapeutic effects.
Collapse
|
5
|
Ohar JA, Ferguson GT, Mahler DA, Drummond MB, Dhand R, Pleasants RA, Anzueto A, Halpin DMG, Price DB, Drescher GS, Hoy HM, Haughney J, Hess MW, Usmani OS. Measuring Peak Inspiratory Flow in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:79-92. [PMID: 35023914 PMCID: PMC8747625 DOI: 10.2147/copd.s319511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Dry powder inhalers (DPIs) are breath actuated, and patients using DPIs need to generate an optimal inspiratory flow during the inhalation maneuver for effective drug delivery to the lungs. However, practical and standardized recommendations for measuring peak inspiratory flow (PIF)—a potential indicator for effective DPI use in chronic obstructive pulmonary disease (COPD)—are lacking. To evaluate recommended PIF assessment approaches, we reviewed the Instructions for Use of the In-Check™ DIAL and the prescribing information for eight DPIs approved for use in the treatment of COPD in the United States. To evaluate applied PIF assessment approaches, we conducted a PubMed search from inception to August 31, 2021, for reports of clinical and real-life studies where PIF was measured using the In-Check™ DIAL or through a DPI in patients with COPD. Evaluation of collective sources, including 47 applicable studies, showed that instructions related to the positioning of the patient with their DPI, instructions for exhalation before the inhalation maneuver, the inhalation maneuver itself, and post-inhalation breath-hold times varied, and in many instances, appeared vague and/or incomplete. We observed considerable variation in how PIF was measured in clinical and real-life studies, underscoring the need for a standardized method of PIF measurement. Standardization of technique will facilitate comparisons among studies. Based on these findings and our clinical and research experience, we propose specific recommendations for PIF measurement to standardize the process and better ensure accurate and reliable PIF values in clinical trials and in daily clinical practice.
Collapse
Affiliation(s)
- Jill A Ohar
- Section of Pulmonary, Critical Care, Allergy, and Immunology, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Gary T Ferguson
- Pulmonary Research Institute of Southeast Michigan, Farmington Hills, MI, USA
| | | | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajiv Dhand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Roy A Pleasants
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Quality, University of Michigan, Ann Arbor, MI, USA
| | - Antonio Anzueto
- Pulmonology Section, University of Texas Health, and South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David M G Halpin
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - David B Price
- Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK.,Observational and Pragmatic Research Institute, Singapore
| | - Gail S Drescher
- Pulmonary Services Department, MedStar Washington Hospital Center, Washington, DC, USA
| | - Haley M Hoy
- Transplant Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Haughney
- Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London, UK
| |
Collapse
|