1
|
Guan C, Zou X, Gao X, Liu S, Gao J, Shi W, Dong Q, Jiang X, Zhong X. Feedback loop LINC00511-YTHDF2-SOX2 regulatory network drives cholangiocarcinoma progression and stemness. MedComm (Beijing) 2024; 5:e743. [PMID: 39445001 PMCID: PMC11496568 DOI: 10.1002/mco2.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 10/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) was identified as a malignant tumor with rising incidence and mortality rates, and the roles of long noncoding RNA (lncRNA) in CCA remained not entirely clear. In this study, LINC00511 had high expression in CCA, which was closely related to poor prognosis. Knockdown of LINC00511 significantly inhibited cell malignant biological behaviors. It also affected the stemness of CCA, evidenced by decreased SOX2 protein expression. Moreover, the study revealed the interaction of LINC00511, YTHDF2, and SOX2 in CCA. Specifically, LINC00511 facilitated the formation of a complex with YTHDF2 on SOX2 mRNA, which uniquely enhances the mRNA's stability through m6A methylation sites. This stabilization appears crucial for maintaining malignant behaviors in CCA cells. Additionally, LINC00511 modulated SOX2 expression via the PI3K/AKT signaling pathway. Meanwhile, SOX2 can also promote LINC00511 expression as an upstream transcription factor, thereby confirming a positive feedback loop formed by LINC00511, YTHDF2, and SOX2, which plays a significant role in the occurrence and development of CCA. Finally, the study successfully constructed two patient-derived xenograft models, revealing the vital role of LINC00511 in CCA development. In summary, this research provides a comprehensive understanding of the role of LINC00511 in the pathogenesis of CCA.
Collapse
Affiliation(s)
- Canghai Guan
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xinlei Zou
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xin Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Sidi Liu
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Jianjun Gao
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Wujiang Shi
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Qingfu Dong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xingming Jiang
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| | - Xiangyu Zhong
- Department of General SurgeryThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang ProvinceChina
| |
Collapse
|
2
|
Su Y, Huo T, Wang Y, Li J. Construction and clinical significance of prognostic risk markers based on cancer driver genes in lung adenocarcinoma. Clin Transl Oncol 2024:10.1007/s12094-024-03703-1. [PMID: 39292390 DOI: 10.1007/s12094-024-03703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocarcinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated. METHODS LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database. RESULTS 40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identified through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimethylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes. CONCLUSION This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.
Collapse
Affiliation(s)
- Yazhou Su
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, 453100, Henan province, China.
| | - Tingting Huo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Yanan Wang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| | - Jingyan Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan province, China
| |
Collapse
|
3
|
Shi J, Lin Z, Zheng Z, Chen M, Huang X, Wang J, Li M, Shao J. Glutamine metabolism promotes human trophoblast cell invasion via COL1A1 mediated by PI3K-AKT pathway. J Reprod Immunol 2024; 166:104321. [PMID: 39243705 DOI: 10.1016/j.jri.2024.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Abnormal trophoblast invasion function is an important cause of recurrent spontaneous abortion (RSA). Recent research has revealed a connection between glutamine metabolism and RSA. However, the interplay between these three factors and their related mechanisms remains unclear. To address this issue, we collected villus tissues from 10 healthy women with induced abortion and from 10 women with RSA to detect glutamine metabolism. Then, the trophoblast cell line HTR-8/SVneo was used in vitro to explore the effect of glutamine metabolism on trophoblast cells invasion, which was tested by transwell assay. We found that the concentration of glutamine in the villi of the normal pregnancy group was significantly higher than that in the RSA group. Correspondingly, the expression levels of key enzymes involved in glutamine synthesis and catabolism, including glutamine synthetase and glutaminase, were significantly higher in the villi of the normal pregnancy group. Regarding trophoblast cells, glutamine markedly enhanced the proliferative and invasive abilities of HTR-8/SVneo cells. Additionally, collagen type I alpha 1 (COL1A1) was confirmed to be a downstream target of glutamine, and glutamine also activated the PI3K-AKT pathway in HTR-8/SVneo cells. These findings indicate that glutamine metabolism facilitates the invasion of trophoblasts by up-regulating COL1A1 expression through the activation of the PI3K-AKT pathway, but the specific mechanism of COL1A1 requires further study.
Collapse
Affiliation(s)
- Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, China
| | - Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jiarui Wang
- Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China.
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China.
| |
Collapse
|
4
|
Zhao L, Biswas S, Li Y, Sooranna SR. The emerging roles of LINC00511 in breast cancer development and therapy. Front Oncol 2024; 14:1429262. [PMID: 39206156 PMCID: PMC11349568 DOI: 10.3389/fonc.2024.1429262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is associated with malignant tumors in women worldwide with persistently high incidence and mortality rates. The traditional therapies including surgery, chemotherapy, radiotherapy and targeted therapy have certain therapeutic effects on BC patients, but acquired drug resistance can lead to tumor recurrence and metastasis. This remains a clinical challenge that is difficult to solve during treatment. Therefore, continued research is needed to identify effective targets and treatment methods, to ultimately implement personalized treatment strategies. Several studies have implicated that the long non-coding RNA LINC00511 is closely linked to the occurrence, development and drug resistance of BC. Here we will review the structure and the mechanisms of action of lnc RNA LINC00511 in various cancers, and then explore its expression and its related regulatory mechanisms during BC. In addition, we will discuss the biological functions and the potential clinical applications of LINC00511 in BC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Sangita Biswas
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Yepeng Li
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Zhou M, Li H, Gao B, Zhao Y. The prognostic impact of pathogenic stromal cell-associated genes in lung adenocarcinoma. Comput Biol Med 2024; 178:108692. [PMID: 38879932 DOI: 10.1016/j.compbiomed.2024.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) stands as the most prevalent subtype among lung cancers. Interactions between stromal and cancer cells influence tumor growth, invasion, and metastasis. However, the regulatory mechanisms of stromal cells in the lung adenocarcinoma tumor microenvironment remain unclear. This study seeks to elucidate the regulatory connections among critical pathogenic genes and their associated expression variations within distinct stromal cell subtypes. METHOD Analysis and investigation were conducted on a total of 114,019 single-cell RNA data and 346 The Cancer Genome Atlas (TCGA) LUAD-related samples using bioinformatics and statistical algorithms. Differential gene expression analysis was performed for tumor samples and controls, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differential genes between stromal cells and other cell clusters were identified and intersected with the differential genes from TCGA. We employed a combination of LASSO regression and multivariable Cox regression to identify the ultimate set of pathogenic gene. Survival models were trained to predict the relationship between patient survival and these pathogenic genes. Analysis of transcription factor (TF) cell specificity and pseudotime trajectories within stromal cell subpopulations revealed that vascular endothelial cells (ECs) and matrix cancer-associated fibroblasts (CAFs) are key in regulation of the prognosis-associated genes CAV2, COL1A1, TIMP1, ETS2, AKAP12, ID1 and COL1A2. RESULTS Seven pathogenic genes associated with LUAD in stromal cells were identified and used to develop a survival model. High expression of these genes is linked to a greater risk of poor survival. Stromal cells were categorized into eight subtypes and one unannotated cluster. Mesothelial cells, vascular endothelial cells (ECs), and matrix cancer-associated fibroblasts (CAFs) showed cell-specific regulation of the pathogenic genes. CONCLUSIONS The seven disease-causing genes in vascular ECs and matrix CAFs can be used to detect the survival status of LUAD patients, providing new directions for future targeted drug design.
Collapse
Affiliation(s)
- Murong Zhou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150040, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Chong ZX, Ho WY, Yeap SK. Tumour-regulatory role of long non-coding RNA HOXA-AS3. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 189:13-25. [PMID: 38593905 DOI: 10.1016/j.pbiomolbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218-5p, miR-455-5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/β-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, in vitro, or in vivo studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
7
|
Sun YY, Li S, Liu C, Pan Y, Xiao Y. Identification of a methyltransferase-related long noncoding RNA signature as a novel prognosis biomarker for lung adenocarcinoma. Aging (Albany NY) 2024; 16:8747-8771. [PMID: 38771129 PMCID: PMC11164517 DOI: 10.18632/aging.205837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for a high proportion of tumor deaths globally, while methyltransferase-related lncRNAs in LUAD were poorly studied. METHODS In our study, we focused on two distinct cohorts, TCGA-LUAD and GSE3021, to establish a signature of methyltransferase-related long non-coding RNAs (MeRlncRNAs) in LUAD. We employed univariate Cox and LASSO regression analyses as our main analytical tools. The GSE30219 cohort served as the validation cohort for our findings. Furthermore, to explore the differential pathway enrichments between groups stratified by risk, we utilized Gene Set Enrichment Analysis (GSEA). Additionally, single-sample GSEA (ssGSEA) was conducted to assess the immune infiltration landscape within each sample. Reverse transcription quantitative PCR (RT-qPCR) was also performed to verify the expression of prognostic lncRNAs in both clinically normal and LUAD samples. RESULTS In LUAD, we identified a set of 32 MeRlncRNAs. We further narrowed our focus to six prognostic lncRNAs to develop gene signatures. The TCGA-LUAD cohort and GSE30219 were utilized to validate the risk score model derived from these signatures. Our analysis showed that the risk score served as an independent prognostic factor, linked to immune-related pathways. Additionally, the analysis of immune infiltration revealed that the immune landscape in high-risk groups was suppressed, which could contribute to poorer prognoses. We also constructed a regulatory network comprising 6 prognostic lncRNAs, 19 miRNAs, and 21 mRNAs. Confirmatory RT-qPCR results aligned with public database findings, verifying the expression of these prognostic lncRNAs in the samples. CONCLUSION The prognostic gene signature of LUAD associated with MeRlncRNAs that we provided, may offer us a comprehensive picture of the prognosis prediction for LUAD patients.
Collapse
Affiliation(s)
- Yang Yong Sun
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yaqiang Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Department of Emergency, Nanjing Jiangning Hospital, Jiangsu, China
| |
Collapse
|
8
|
Wang S, Gu X, Xu D, Liu B, Qin K, Yuan X. Comprehensive analysis of m6A modification patterns and m6A-related lncRNAs as potential biomarkers in lung adenocarcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2285-2303. [PMID: 38148718 DOI: 10.1002/tox.24110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation is considered to induce tumor cell proliferation, migration, and apoptosis. Understanding the mechanism of m6A-related lncRNAs in the development of lung adenocarcinoma (LUAD) may help predict prognosis. METHODS m6A-related lncRNAs related to lung cancer were identified and combined with the MeRIP-Seq dataset. The consensus clustering method was utilized to divide LUAD patients, and prognostic model was constructed using the Lasso Cox algorithm. The cluster profiler package was used for gene ontology and KEGG enrichment. The proportion of immune infiltration was estimated using the CIBERSORT algorithm. The decision tree was constructed by the rpart package, and nomograms were built by the rms package. The Connectivity Map database was analyzed for the therapeutic effects of small molecule drugs for LUAD. In addition, qPCR, colony formation and transwell assays were performed to validate functions of m6A-associated lncRNAs. RESULTS Nineteen m6A-modified lncRNAs in LUAD were identified. LUAD patients were divided into two categories based on the expression of 19 m6A-related lncRNAs. Cluster 2 patients had better antigen production and expression, while naive B cells, plasma cells, and activated NK cells were lower in cluster 1. Nine m6A-related lncRNAs were selected to establish a risk model for evaluating the prognosis of LUAD patients. The high-risk group had higher tumor mutational burden and lower TIDE scores with more gamma delta T cells and neutrophils. Nomograms showed that the prognostic model had predominant predictive ability for LUAD patients based on the risk score analyzed by the decision tree model. Benzo(a)pyrene and neurodazine might improve the prognosis of LUAD patients. The qRT-PCR results confirmed the reliability of the analytical results. CONCLUSION The establishment of a prognostic model of m6A-related lncRNAs can independently predict overall survival in LUAD and may help to develop personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Xu H, Jiang L, Qin L, Shi P, Xu P, Liu C. Single-cell transcriptome analysis reveals intratumoral heterogeneity in lung adenocarcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:1847-1857. [PMID: 38133212 DOI: 10.1002/tox.24048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is a major health concern worldwide. Single-cell RNA-sequencing (scRNA-seq) provides a valuable platform for exploring the intratumoral heterogeneity in LUAD and holds great potential for facilitating the development and application of personalized therapeutic approaches. METHODS The TCGA-LUAD (n = 503), GSE68465 (n = 442), GSE72094 (n = 398), and GSE26939 (n = 115) datasets were retrieved for prognostic assessment. Subgroup analysis was performed for the epithelial cells, endothelial cells, immune cells, and fibroblasts, and the transcription factors and tumor-related pathways enriched in each subgroup were analyzed using PROGENy and DoRothEA package. The InferCNV software was used to calculate the copy number variations (CNVs) in tumor cell subgroups with normal epithelial cells as the reference. The association between the annotated cell types and survival was analyzed using the Scissor software. RESULTS We identified eight major cell types in LUAD, namely epithelial cells, NK cells, T and B cells, endothelial cells, mast cells, myeloid cells, and fibroblasts, of which the epithelial cells and B cells showed a marked increase in the tumor samples. In addition, we also detected an intense signal transduction network from the cancer-associated fibroblasts (CAFs) to malignant cells, mainly involving the DCN/MET, COLA1/DDR1, COL1A1/SDC1, and COL1A2/SDC1 pathways. The tumor differentiation trajectory consisted of state 1 and state 2, which were enriched in HIF1A, and state 4. Furthermore, only a few B cells originated from the normal tissue, suggesting significant recruitment and infiltration of B cells in LUAD. Based on differentially upregulated genes in the cells positively and negatively associated with survival, we established a prognostic model that showed satisfactory predictive performance in three different cohorts. States 3 and 2 of epithelial cells included the majority of cells with KRAS mutation, whereas state 2 showed high frequency of EGFR mutations. CONCLUSION We analyzed intra-tumor heterogeneity of LUAD at the single-cell level and developed a prognostic index that was highly effective across multiple cohorts.
Collapse
Affiliation(s)
- Hong Xu
- Department of Thoracic and Cardiovascular Surgery, Yiling Hospital, China Three Gorges University, Yichang, China
| | - Lin Jiang
- Department of Gastroenterology, Yiling Hospital, China Three Gorges University, Yichang, China
| | - Lingshan Qin
- Department of clinical medicne, China medical university, Shenyang, China
| | - Ping Shi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Shenyang, China
| | - Ping Xu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China, Guangzhou, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, Guangzhou, China
| |
Collapse
|
10
|
Hashemi M, Gholami S, Raesi R, Sarhangi S, Mahmoodieh B, Koohpar ZK, Goharrizi MASB, Behroozaghdam M, Entezari M, Salimimoghadam S, Zha W, Rashidi M, Abdi S, Taheriazam A, Nabavi N. Biological and therapeutic viewpoints towards role of miR-218 in human cancers: Revisiting molecular interactions and future clinical translations. Cell Signal 2023:110786. [PMID: 37380085 DOI: 10.1016/j.cellsig.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Sarhangi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| |
Collapse
|
11
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Dourado MR, Elseragy A, da Costa BC, Téo FH, Guimarães GN, Machado RA, Risteli M, Wahbi W, Gurgel Rocha CA, Paranaíba LMR, González-Arriagada WA, da Silva SD, Rangel ALCA, Marques MR, Rossa Junior C, Salo T, Coletta RD. Stress induced phosphoprotein 1 overexpression controls proliferation, migration and invasion and is associated with poor survival in oral squamous cell carcinoma. Front Oncol 2023; 12:1085917. [PMID: 36713524 PMCID: PMC9874128 DOI: 10.3389/fonc.2022.1085917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Objective Although there have been remarkable achievements in the molecular landscape of oral squamous cell carcinoma (OSCC) in recent years, bringing advances in the understanding of its pathogenesis, development and progression, little has been applied in the prognosis and choosing the optimal treatment. In this study, we explored the influence of the stress induced phosphoprotein 1 (STIP1), which is frequently reported to be highly expressed in many cancers, in OSCCs. Methods STIP1 expression was assessed in the TCGA database and in two independent cohorts by immunohistochemistry. Knockdown strategy was applied in OSCC cell lines to determine the impact of STIP1 on viability, proliferation, migration and invasion. The zebrafish model was applied for studying tumor formation and metastasis in vivo. The association of STIP1 and miR-218-5p was explored by bioinformatics and mimics transfection. Results STIP1 was highly expressed in OSCCs and significantly associated with shortened survival and higher risk of recurrence. STIP1 down-regulation decreased proliferation, migration and invasion of tumor cells, and reduced the number of metastases in the Zebrafish model. STIP1 and miR-218-5p were inversely expressed, and the transfection of miR-218-5p mimics into OSCC cells decreased STIP1 levels as well as proliferation, migration and invasion. Conclusion Our findings show that STIP1 overexpression, which is inversely associated with miR-218-5p levels, contributes to OSCC aggressiveness by controlling proliferation, migration and invasion and is a determinant of poor prognosis.
Collapse
Affiliation(s)
- Mauricio Rocha Dourado
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Amr Elseragy
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Bruno Cesar da Costa
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Fábio Haach Téo
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil,Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, São Paulo, Brazil
| | - Maija Risteli
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, and Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Clarissa Araujo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil,Federal University of Bahia, Salvador, Bahia, Brazil,Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Lívia Máris Ribeiro Paranaíba
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Sabrina Daniela da Silva
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, and Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | | | - Marcelo Rocha Marques
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland,Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, and Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland,HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil,*Correspondence: Ricardo D. Coletta,
| |
Collapse
|
13
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Ayatollahi SA. A review on the role of LINC00511 in cancer. Front Genet 2023; 14:1116445. [PMID: 37124625 PMCID: PMC10140539 DOI: 10.3389/fgene.2023.1116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Long Intergenic Non-Protein Coding RNA 511 (LINC00511) is an RNA gene being mostly associated with lung cancer. Further assessments have shown dysregulation of this lncRNA in a variety of cancers. LINC00511 has interactions with hsa-miR-29b-3p, hsa-miR-765, hsa-mir-150, miR-1231, TFAP2A-AS2, hsa-miR-185-3p, hsa-miR-29b-1-5p, hsa-miR-29c-3p, RAD51-AS1 and EZH2. A number of transcription factors have been identified that regulate expression of LINC00511. The current narrative review summarizes the role of LINC00511 in different cancers with an especial focus on its prognostic impact in human cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Seyed Abdulmajid Ayatollahi,
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Seyed Abdulmajid Ayatollahi,
| |
Collapse
|
14
|
Song Z, Luo J, Wu M, Zhang Z. linc00511 Knockdown Inhibits Lung Cancer Progression by Regulating miR-16-5p/MMP11. Crit Rev Eukaryot Gene Expr 2023; 33:17-30. [PMID: 37602450 DOI: 10.1615/critreveukaryotgeneexpr.2023047789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lung cancer (LC) is a malignant tumor that extremely impairs people. According to numerous studies, long non-coding RNA (lncRNA) was inextricably involved in the advancement of LC. The work aspired to identify linc00511 expression in LC and to dig for the underlying mechanisms linc00511 regulated LC progression. Experimental outcomes revealed that linc00511 was obviously upregulated in LC, and linc00511 knockdown significantly impaired the malignant phenotype of LC cells in vitro. For an in-depth study on the contribution of linc00511 to LC advancement, it was disclosed that miR-16-5p had binding sites to the sequence of linc00511, which also inversely affected linc00511 expression in LC. Further experimental data demonstrated that miR-16-5p directly and negatively targeted matrix metallopeptidase 11 (MMP11). Also, rescue experiments displayed that miR-16-5p inhibition or MMP11 overexpressing offset the suppressive impacts of linc00511 silencing on LC progression. To sum up, our findings indicated that linc00511 performed a crucial role in facilitating LC progression, and mechanistic studies demonstrated that linc00511 aggravated LC progression via targeting the miR-16-5p/MMP11 axis.
Collapse
Affiliation(s)
- Zhengyi Song
- Chest Surgery, National Medicine Gezhouba Central Hospital, Yichang 443000, Hubei, China
| | - Jing Luo
- Chest Surgery, National Medicine Gezhouba Central Hospital, Yichang 443000, Hubei, China
| | - Ming Wu
- Department of Respiratory Critical Care Medicine, Xiangyang No. 1 People's Hospital, Xiangyang 441000, Hubei, China
| | - Zelin Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| |
Collapse
|
15
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|