1
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Krishnan R, Stapledon CJM, Mostafavi H, Freitas JR, Liu X, Mahalingam S, Zaid A. Anti-inflammatory actions of Pentosan polysulfate sodium in a mouse model of influenza virus A/PR8/34-induced pulmonary inflammation. Front Immunol 2023; 14:1030879. [PMID: 36845136 PMCID: PMC9947849 DOI: 10.3389/fimmu.2023.1030879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction There is an unmet medical need for effective anti-inflammatory agents for the treatment of acute and post-acute lung inflammation caused by respiratory viruses. The semi-synthetic polysaccharide, Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation, was investigated for its systemic and local anti-inflammatory effects in a mouse model of influenza virus A/PR8/1934 (PR8 strain) mediated infection. Methods Immunocompetent C57BL/6J mice were infected intranasally with a sublethal dose of PR8 and treated subcutaneously with 3 or 6 mg/kg PPS or vehicle. Disease was monitored and tissues were collected at the acute (8 days post-infection; dpi) or post-acute (21 dpi) phase of disease to assess the effect of PPS on PR8-induced pathology. Results In the acute phase of PR8 infection, PPS treatment was associated with a reduction in weight loss and improvement in oxygen saturation when compared to vehicle-treated mice. Associated with these clinical improvements, PPS treatment showed a significant retention in the numbers of protective SiglecF+ resident alveolar macrophages, despite uneventful changes in pulmonary leukocyte infiltrates assessed by flow cytometry. PPS treatment in PR8- infected mice showed significant reductions systemically but not locally of the inflammatory molecules, IL-6, IFN-g, TNF-a, IL-12p70 and CCL2. In the post-acute phase of infection, PPS demonstrated a reduction in the pulmonary fibrotic biomarkers, sICAM-1 and complement factor C5b9. Discussion The systemic and local anti-inflammatory actions of PPS may regulate acute and post-acute pulmonary inflammation and tissue remodeling mediated by PR8 infection, which warrants further investigation.
Collapse
Affiliation(s)
- Ravi Krishnan
- Research and Development, Paradigm Biopharmaceuticals Ltd., Melbourne, VIC, Australia
| | | | - Helen Mostafavi
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Cuffaro D, Ciccone L, Rossello A, Nuti E, Santamaria S. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. J Med Chem 2022; 65:13505-13532. [PMID: 36250680 PMCID: PMC9620172 DOI: 10.1021/acs.jmedchem.2c01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. In 1999, two members of the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) family of metalloproteinases, ADAMTS4 and ADAMTS5, or aggrecanases, were identified as the enzymes responsible for aggrecan degradation in cartilage. The first aggrecanase inhibitors targeted the active site by chelation of the catalytic zinc ion. Due to the generally disappointing performance of zinc-chelating inhibitors in preclinical and clinical studies, inhibition strategies tried to move away from the active-site zinc in order to improve selectivity. Exosite inhibitors bind to proteoglycan-binding residues present on the aggrecanase ancillary domains (called exosites). While exosite inhibitors are generally more selective than zinc-chelating inhibitors, they are still far from fulfilling their potential, partly due to a lack of structural and functional data on aggrecanase exosites. Filling this gap will inform the design of novel potent, selective aggrecanase inhibitors.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department
of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Salvatore Santamaria
- Department
of Immunology and Inflammation, Imperial
College London, Du Cane Road, London W12
0NN, U.K.
| |
Collapse
|
4
|
Krishnan R, Duiker M, Rudd PA, Skerrett D, Pollard JGD, Siddel C, Rifat R, Ng JHK, Georgius P, Hererro LJ, Griffin P. Pentosan polysulfate sodium for Ross River virus-induced arthralgia: a phase 2a, randomized, double-blind, placebo-controlled study. BMC Musculoskelet Disord 2021; 22:271. [PMID: 33711991 PMCID: PMC7955617 DOI: 10.1186/s12891-021-04123-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Alphaviruses, such as Ross River (RRV) and chikungunya virus (CHIKV), cause significant global morbidity, with outbreaks of crippling joint inflammation and pain, leaving patients incapacitated for months to years. With no available vaccine or specific therapeutic for any alphaviral disease, and a growing economic and public health burden, there is a serious need for the development of specific therapies. Methods This study evaluated the safety and efficacy of pentosan polysulfate sodium (PPS) in subjects with RRV-induced arthralgia in a double-blind, placebo-controlled trial. Twenty subjects were randomized 2:1 to subcutaneous PPS (2 mg/kg) or placebo (sodium chloride 0.9%) twice weekly for 6 weeks. Safety evaluation included physical examination, concomitant medications, and laboratory findings. Efficacy assessments included change from baseline in joint function (hand grip strength and RAPID3) and quality of life (SF-36) at Days 15, 29, 39 and 81 after treatment initiation. Inflammatory and cartilage degradation biomarkers were exploratory endpoints. Results PPS was well tolerated, with a similar proportion of subjects reporting at least one treatment-emergent adverse event (TEAE) in the treatment and placebo groups. Injection site reactions were the most common TEAE and occurred more frequently in the PPS group. Dominant hand grip strength and SF-36 scores improved with PPS at all time points assessed, with hand grip strength improvement of 6.99 kg (p = 0.0189) higher than placebo at Day 15. PPS showed significant improvements versus placebo in adjusted mean relative change from baseline for RAPID3 Pain (p = 0.0197) and Total (p = 0.0101) scores at Day 15. At the conclusion of the study overall joint symptoms, assessed by RAPID3, showed near remission in 61.5% of PPS subjects versus 14.3% of placebo subjects. Additionally, PPS treatment improved COMP, CTX-II, CCL1, CXCL12, CXCL16 and CCL17 biomarker levels versus placebo. Conclusions Overall, the improvements in strength and joint symptoms warrant further evaluation of PPS as a specific treatment for RRV-induced and other forms of arthritis. Trial registration This trial is registered at the Australian New Zealand Clinical Trials Registry #ACTRN12617000893303. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04123-w.
Collapse
Affiliation(s)
- Ravi Krishnan
- Paradigm Biopharmaceuticals Ltd., Melbourne, Victoria, Australia
| | - Melanie Duiker
- Paradigm Biopharmaceuticals Ltd., Melbourne, Victoria, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Donna Skerrett
- Paradigm Biopharmaceuticals Ltd., Melbourne, Victoria, Australia
| | | | | | - Rifat Rifat
- Rich River Health Group, Echuca, Victoria, Australia
| | - Jennifer H K Ng
- Clinical Trials Unit (Griffith Health), Griffith University, Gold Coast, Australia and Gold Coast University, Gold Coast, Queensland, Australia
| | - Peter Georgius
- Sunshine Coast Clinical Research, Gold Coast, Queensland, Australia
| | - Lara J Hererro
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Misericordiae Ltd., Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
5
|
Human osteocyte expression of Nerve Growth Factor: The effect of Pentosan Polysulphate Sodium (PPS) and implications for pain associated with knee osteoarthritis. PLoS One 2019; 14:e0222602. [PMID: 31557169 PMCID: PMC6762051 DOI: 10.1371/journal.pone.0222602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/03/2019] [Indexed: 01/05/2023] Open
Abstract
Pentosan polysulphate sodium (PPS) is a promising therapeutic agent for blocking knee pain in individuals with knee osteoarthritis (KOA). The mode of action of PPS in this context is unknown. We hypothesised that the osteocyte, being the principal cell type in the sub-chondral bone, was capable of expressing the pain mediator Nerve Growth Factor (NGF), and that this may be altered in the presence of PPS. We tested the expression of NGF and the response to PPS in the presence or absence of the proinflammatory cytokine tumour necrosis factor-alpha (TNFα), in human osteocytes. For this we differentiated human primary osteoblasts grown from subchondral bone obtained at primary knee arthroplasty for KOA to an osteocyte-like stage over 28d. We also tested NGF expression in fresh osteocytes obtained by sequential digestion from KOA bone and by immunofluorescence in KOA bone sections. We demonstrate for the first time the production and secretion of NGF/proNGF by this cell type derived from patients with KOA, implicating osteocytes in the pain response in this pathological condition and possibly others. PPS inhibited TNFα-induced levels of proNGF secretion and TNFα induced NGF mRNA expression. Together, this provides evidence that PPS may act to suppress the release of NGF in the subchondral bone to ameliorate pain associated with knee osteoarthritis.
Collapse
|
6
|
Logue T, Lizotte-Waniewski M, Brew K. Thermodynamic profiles of the interactions of suramin, chondroitin sulfate, and pentosan polysulfate with the inhibitory domain of TIMP-3. FEBS Lett 2019; 594:94-103. [PMID: 31359422 DOI: 10.1002/1873-3468.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
Extracellular levels of soluble TIMP-3 are low, reflecting its binding by extracellular matrix (ECM) components including sulfated glycosaminoglycans (SGAGs) and endocytosis via low density lipoprotein receptor-related protein 1. Since TIMP-3 inhibits ECM degradation, the ability of SGAGs to elevate extracellular TIMP-3 is significant for osteoarthritis treatment. Previous studies of such interactions have utilized immobilized TIMP-3 or ligands. Here, we report the thermodynamics of the interactions of the sGAG-binding N-domain of TIMP-3 with chondroitin sulfate, pentosan polysulfate, and suramin in solution using isothermal titration calorimetry. All three interactions are driven by a favorable negative enthalpy change combined with an unfavorable decrease in entropy. The heat capacity changes (ΔCp ) for all of the interactions are zero, indicating an insignificant contribution from hydrophobic interactions.
Collapse
Affiliation(s)
- Timothy Logue
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Michelle Lizotte-Waniewski
- Integrated Medical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
7
|
Crivaro AN, Mucci JM, Bondar CM, Ormazabal ME, Ceci R, Simonaro C, Rozenfeld PA. Efficacy of pentosan polysulfate in in vitro models of lysosomal storage disorders: Fabry and Gaucher Disease. PLoS One 2019; 14:e0217780. [PMID: 31150494 PMCID: PMC6544267 DOI: 10.1371/journal.pone.0217780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 01/18/2023] Open
Abstract
Gaucher and Fabry diseases are the most prevalent sphingolipidoses. Chronic inflammation is activated in those disorders, which could play a role in pathogenesis. Significant degrees of amelioration occur in patients upon introduction of specific therapies; however, restoration to complete health status is not always achieved. The idea of an adjunctive therapy that targets inflammation may be a suitable option for patients. PPS is a mixture of semisynthetic sulfated polyanions that have been shown to have anti-inflammatory effects in mucopolysaccharidosis type I and II patients and animal models of type I, IIIA and VI. We hypothesized PPS could be a useful adjunctive therapy to inflammation for Gaucher and Fabry diseases. The objective of this work is to analyze the in vitro effect of PPS on inflammatory cytokines in cellular models of Gaucher and Fabry diseases, and to study its effect in Gaucher disease associated in vitro bone alterations. Cultures of peripheral blood mononuclear cells from Fabry and Gaucher patients were exposed to PPS. The secretion of proinflammatory cytokines was significantly reduced. Peripheral blood cells exposed to PPS from Gaucher patients revealed a reduced tendency to differentiate to osteoclasts. Osteoblasts and osteocytes cell lines were incubated with an inhibitor of glucocerebrosidase, and conditioned media was harvested in order to analyze if those cells secrete factors that induce osteoclastogenesis. Conditioned media from this cell cultures exposed to PPS produced lower numbers of osteoclasts. We could demonstrate PPS is an effective molecule to reduce the production of proinflammatory cytokines in in vitro models of Fabry and Gaucher diseases. Moreover, it was effective at ameliorating bone alterations of in vitro models of Gaucher disease. These results serve as preclinical supportive data to start clinical trials in human patients to analyze the effect of PPS as a potential adjunctive therapy for Fabry and Gaucher diseases.
Collapse
Affiliation(s)
- Andrea N. Crivaro
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Juan M. Mucci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Constanza M. Bondar
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Maximiliano E. Ormazabal
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Romina Ceci
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
| | - Calogera Simonaro
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paula A. Rozenfeld
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biologicas, La Plata, Argentina
- * E-mail:
| |
Collapse
|
8
|
Bone Marrow Edema Syndrome of the Medial Femoral Condyle Treated With Extracorporeal Shock Wave Therapy: A Clinical and MRI Retrospective Comparative Study. Arch Phys Med Rehabil 2017; 99:873-879. [PMID: 29223709 DOI: 10.1016/j.apmr.2017.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To determine the validity of extracorporeal shock wave therapy (ESWT) in the treatment of bone marrow edema (BME) of the medial condyle of the knee. DESIGN Retrospective. SETTING Orthopedic Surgery outpatient clinic. PARTICIPANTS Symptomatic patients (N=56) affected by BME of the medial condyle of the knee. Patients were equally divided into an ESWT-treated group and a control group, which was managed conservatively. INTERVENTIONS ESWT delivery to the medial condyle of the affected knee. MAIN OUTCOME MEASURES Clinical and functional assessment of the knee was performed with the use of the clinical and functional scores of the Knee Society Score (KSS). Pain was measured with the visual analog scale (VAS). BME area was measured with magnetic resonance imaging (MRI) before treatment and at 4 months' follow-up. RESULTS Clinical evaluation of patients at final follow-up of 4 months posttreatment showed a significant improvement (P<.0001) of symptoms and knee functionality, both for range of motion and strength in both groups. VAS values were significantly improved (P<.0001) in both groups, with 3 patients in the ESWT group being pain-free (VAS=0) at 4 months' follow-up. At 4 months, MRI assessments on both sagittal and coronal views showed a significant reduction in BME in the ESWT group compared with the control group. CONCLUSIONS Our findings show that ESWT is a valid nonpharmacologic and noninvasive therapy for spontaneous BME of the medial condyle that improves the affected vascular and metabolic state present in this pathologic disorder through its metabolic mechanisms of action.
Collapse
|