1
|
Luo H, Fu L, Wang X, Yini Xu, Ling Tao, Shen X. Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7. Chin Med 2023; 18:161. [PMID: 38072948 PMCID: PMC10712074 DOI: 10.1186/s13020-023-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Salvianolic acid B (Sal B), a water-soluble phenolic compound derived from Salvia miltiorrhiza Bunge, is commonly used in Traditional Chinese Medicine to treat cardiovascular disease. In our previous study, Sal B protected against myocardial fibrosis induced by diabetic cardiomyopathy (DCM). This study aimed to investigate the ameliorative effects and potential mechanisms of Sal B in mitigating myocardial fibrosis induced by DCM. METHODS Various methods were used to investigate the effects of Sal B on myocardial fibrosis induced by DCM in vivo and in vitro. These methods included blood glucose measurement, echocardiography, HE staining, Masson's trichrome staining, Sirius red staining, cell proliferation assessment, determination of hydroxyproline levels, immunohistochemical staining, evaluation of fibrosis-related protein expression (Collagen-I, Collagen-III, TGF-β1, p-Smad3, Smad3, Smad7, and α-smooth muscle actin), analysis of Smad7 gene expression, and analysis of Smad7 ubiquitin modification. RESULTS The animal test results indicated that Sal B significantly improved cardiac function, inhibited collagen deposition and phenotypic transformation, and ameliorated myocardial fibrosis in DCM by upregulating Smad7, thereby inhibiting the TGF-β1 signaling pathway. In addition, cell experiments demonstrated that Sal B significantly inhibited the proliferation, migration, phenotypic transformation, and collagen secretion of cardiac fibroblasts (CFs) induced by high glucose (HG). Sal B significantly decreased the ubiquitination of Smad7 and stabilized the protein expression of Smad7, thereby increasing the protein expression of Smad7 in CFs and inhibiting the TGF-β1 signaling pathway, which may be the potential mechanism by which Sal B mitigates myocardial fibrosis induced by DCM. CONCLUSION This study revealed that Sal B can improve myocardial fibrosis in DCM by deubiquitinating Smad7, stabilizing the protein expression of Smad7, and blocking the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Hong Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
- The Experimental Animal Center of Guizhou Medical University, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
| | - Lingyun Fu
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Xueting Wang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Ling Tao
- The Experimental Animal Center of Guizhou Medical University, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China.
| |
Collapse
|
2
|
Diehm YF, Gazyakan E, Wang Y, Siegwart LC, Haug V, Kotsougiani-Fischer D, Kneser U, Fischer S. Effective or Harmful-Evaluation of Locally Applied Antibiotics on Adipose Tissue during Lipofilling to the Breast-An In Vitro Study. Int J Mol Sci 2023; 24:ijms24032323. [PMID: 36768647 PMCID: PMC9917044 DOI: 10.3390/ijms24032323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Lipofilling is a frequently used and safe procedure for breast reconstruction. One of the most feared complications is soft tissue infection following lipofilling. Because of this, some surgeons propose the practice of rinsing fat grafts with antibiotics. This study investigates the effect of antibiotic rinses on fat grafts in an in vitro model. Adipocytes and stem cells were isolated from fat tissue harvested during 24 lipofilling procedures and incubated with different doses of clindamycin or cefazolin. Cell viability, metabolism, proliferation, and differentiation capacities were analyzed by gross morphology, fluorescence staining, -(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT-), and Glyceraldehyde 3 Phosphate Dehydrogenase (G3PD)-assay as well as reactive oxygen species (ROS)-assay. Cefazolin and clindamycin led to significant reduction of cell viability of adipocytes. High doses of both antibiotics led to a rupture of adipocytes with visible free lipid droplets. Cell metabolism was significantly decreased after incubation with both antibiotics. There was a significant increase in ROS production. Exposure to clindamycin and cefazolin led to morphological changes in stem cells in a dose- and time-dependent manner. Furthermore, differentiation potential was significantly reduced. Antibiotic susceptibility testing, however, showed that low concentrations of antibiotics effectively inhibited bacterial growth in contaminated fat grafts. This study confirms that rinsing fat grafts with clindamycin or cefazolin not only overly prevents infection but also has cytotoxic and metabolic effects on adipocytes. Therefore, based on these results, the routine clinical application in high doses cannot be recommended.
Collapse
Affiliation(s)
- Yannick F. Diehm
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Emre Gazyakan
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Yiping Wang
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Laura C. Siegwart
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Valentin Haug
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Dimitra Kotsougiani-Fischer
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
- AESTHETIKON Plastische Chirurgie Mannheim & Heidelberg, L9 8, 68161 Mannheim, Germany
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany
- AESTHETIKON Plastische Chirurgie Mannheim & Heidelberg, L9 8, 68161 Mannheim, Germany
- Correspondence:
| |
Collapse
|
3
|
Ibrahim UH, Devnarain N, Mohammed M, Omolo CA, Gafar MA, Salih M, Pant A, Shunmugam L, Mocktar C, Khan R, Oh JK, Govender T. Dual acting acid-cleavable self-assembling prodrug from hyaluronic acid and ciprofloxacin: A potential system for simultaneously targeting bacterial infections and cancer. Int J Biol Macromol 2022; 222:546-561. [PMID: 36150574 DOI: 10.1016/j.ijbiomac.2022.09.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Letitia Shunmugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, School of Arts and Sciences, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
4
|
Papalia R, Cicione C, Russo F, Ambrosio L, Di Giacomo G, Vadalà G, Denaro V. Does Vancomycin Wrapping in Anterior Cruciate Ligament Reconstruction Affect Tenocyte Activity In Vitro? Antibiotics (Basel) 2021; 10:1087. [PMID: 34572669 PMCID: PMC8466500 DOI: 10.3390/antibiotics10091087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Knee septic arthritis is a devastating complication following anterior cruciate ligament (ACL) reconstruction. To prevent this issue, intraoperative soaking of ACL grafts with vancomycin is often performed before implantation. Although vancomycin cytotoxicity has been reported several times, little is known about its biological effect on tenocytes. The aim of this study was to evaluate the in vitro effects of vancomycin on human primary tenocytes (hTCs). hTCs were isolated from hamstring grafts of four patients undergoing ACL reconstruction. After expansion, hTCs were treated with different concentrations of vancomycin (0, 2.5, 5, 10, 25, 50 and 100 mg/mL) for 10, 15, 30 and 60 min. In vitro cytotoxicity was evaluated measuring metabolic activity, cell toxicity, and apoptosis. hTC metabolic activity was affected starting from 10 mg/mL vancomycin and decreased markedly at 100 mg/mL. Cell viability remained unaffected only at a concentration of 2.5 mg/mL vancomycin. Vancomycin cytotoxicity was detected from 10 mg/mL after 15 min and at all higher concentrations. Cells died when treated with concentrations higher than 5 mg/mL. The use of this antibiotic on tendons to prevent infections could be useful and safe for resident cells if used at a concentration of 2.5 mg/mL for up to 1 h of treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus BioMedico University of Rome, 00128 Rome, Italy; (R.P.); (C.C.); (F.R.); (L.A.); (G.D.G.); (V.D.)
| | | |
Collapse
|