Schönau T, Anders C. EMG Amplitude-Force Relationship of Lumbar Back Muscles during Isometric Submaximal Tasks in Healthy Inactive, Endurance and Strength-Trained Subjects.
J Funct Morphol Kinesiol 2023;
8:jfmk8010029. [PMID:
36976126 PMCID:
PMC10058474 DOI:
10.3390/jfmk8010029]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Previous data suggest a correlation between the cross-sectional area of Type II muscle fibers and the degree of non-linearity of the EMG amplitude-force relationship (AFR). In this study we investigated whether the AFR of back muscles could be altered systematically by using different training modalities. We investigated 38 healthy male subjects (aged 19-31 years) who regularly performed either strength or endurance training (ST and ET, n = 13 each) or were physically inactive (controls (C), n = 12). Graded submaximal forces on the back were applied by defined forward tilts in a full-body training device. Surface EMG was measured utilizing a monopolar 4 × 4 quadratic electrode scheme in the lower back area. The polynomial AFR slopes were determined. Between-group tests revealed significant differences for ET vs. ST and C vs. ST comparisons at the medial and caudal electrode positions, but not for ET vs. C. Further, systematic main effects of the "electrode position" could be proven for ET and C groups with decreasing x2 coefficients from cranial to caudal and lateral to medial. For ST, there was no systematic main effect of the "electrode position". The results point towards training-related changes to the fiber-type composition of muscles in the strength-trained participants, particularly for their paravertebral region.
Collapse