Sun L, Han Y, Jing Z, Li D, Liu J, Li D. Finite element analysis of the effect of tibial osteotomy on the stress of polyethylene liner in total knee arthroplasty.
J Orthop Surg (Hong Kong) 2024;
32:10225536241251926. [PMID:
38733065 DOI:
10.1177/10225536241251926]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
AIM
To explore the effects of tibial osteotomy varus angle combined with posterior tibial slope (PTS) on the stress of polyethylene liner in total knee arthroplasty (TKA) by building finite element model (FEM).
METHODS
Established the FEM of standard TKA with tibial osteotomy varus angle 0° to 9° were established and divided into 10 groups. Next, each group was created 10 FEMs with 0° to 9° PTS separately. Calculated the stress on polyethylene liner in each group in Abaqus. Finally, the relevancy between tibial osteotomy angle and polyethylene liner stress was statistically analyzed using multiple regression analysis.
RESULTS
As the varus angle increased, the area of maximum stress gradually shifted medially on the polyethylene liner. As the PTS increases, the percentage of surface contact forces on the medial and lateral compartmental of the polyethylene liner gradually converge to the same. When the varus angle is between 0° and 3°, the maximum stress of the medial compartmental surfaces of polyethylene liner rises smoothly with the increase of the PTS. When the varus angle is between 4° and 9°, as the increase of the PTS, the maximum stress of polyethylene liner rises first and then falls, forming a trough at PTS 5° and then rises again. Compared to the PTS, the varus angle has a large effect on the maximum stress of the polyethylene liner (p < .001).
CONCLUSION
When the varus angle is 0° to 3°, PTS 0° is recommended, which will result in a more equalized stress distribution of the polyethylene liner in TKA.
Collapse