1
|
Neves VCM, Satie Okajima L, Elbahtety E, Joseph S, Daly J, Menon A, Fan D, Volkyte A, Mainas G, Fung K, Dhami P, Pelegrine AA, Sharpe P, Nibali L, Ide M. Repurposing Metformin for periodontal disease management as a form of oral-systemic preventive medicine. J Transl Med 2023; 21:655. [PMID: 37814261 PMCID: PMC10563330 DOI: 10.1186/s12967-023-04456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/19/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Despite the improvements in treatment over the last decades, periodontal disease (PD) affects millions of people around the world and the only treatment available is based on controlling microbial load. Diabetes is known to increase the risk of PD establishment and progression, and recently, glucose metabolism modulation by pharmaceutical or dietarian means has been emphasised as a significant modulator of non-communicable disease development. METHODS The impact of pharmaceutically controlling glucose metabolism in non-diabetic animals and humans (REBEC, UTN code: U1111-1276-1942) was investigated by repurposing Metformin, as a mean to manage periodontal disease and its associated systemic risk factors. RESULTS We found that glucose metabolism control via use of Metformin aimed at PD management resulted in significant prevention of bone loss during induced periodontal disease and age-related bone loss in vivo. Metformin also influenced the bacterial species present in the oral environment and impacted the metabolic epithelial and stromal responses to bacterial dysbiosis at a single cell level. Systemically, Metformin controlled blood glucose levels and age-related weight gain when used long-term. Translationally, our pilot randomized control trial indicated that systemic Metformin was safe to use in non-diabetic patients and affected the periodontal tissues. During the medication window, patients showed stable levels of systemic blood glucose, lower circulating hsCRP and lower insulin levels after periodontal treatment when compared to placebo. Finally, patients treated with Metformin had improved periodontal parameters when compared to placebo treated patients. CONCLUSION This is the first study to demonstrate that systemic interventions using Metformin in non-diabetic individuals aimed at PD prevention have oral-systemic effects constituting a possible novel form of preventive medicine for oral-systemic disease management.
Collapse
Affiliation(s)
- Vitor C M Neves
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK.
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK.
| | - Luciana Satie Okajima
- Department of Periodontology and Implantology, School of Dentistry, São Leopoldo Mandic, Campinas, Brazil
| | - Eyad Elbahtety
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Susan Joseph
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - James Daly
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Athul Menon
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Di Fan
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Ayste Volkyte
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Kathy Fung
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Pawan Dhami
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Andre A Pelegrine
- Department of Periodontology and Implantology, School of Dentistry, São Leopoldo Mandic, Campinas, Brazil
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Mark Ide
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| |
Collapse
|
2
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|